Browsing by Subject "Optical mapping"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Mukherjee, Kingshuk; Rossi, Massimiliano; Salmela, Leena; Boucher, Christina (BioMed Central, 2021)
    Abstract Genome wide optical maps are high resolution restriction maps that give a unique numeric representation to a genome. They are produced by assembling hundreds of thousands of single molecule optical maps, which are called Rmaps. Unfortunately, there are very few choices for assembling Rmap data. There exists only one publicly-available non-proprietary method for assembly and one proprietary software that is available via an executable. Furthermore, the publicly-available method, by Valouev et al. (Proc Natl Acad Sci USA 103(43):15770–15775, 2006), follows the overlap-layout-consensus (OLC) paradigm, and therefore, is unable to scale for relatively large genomes. The algorithm behind the proprietary method, Bionano Genomics’ Solve, is largely unknown. In this paper, we extend the definition of bi-labels in the paired de Bruijn graph to the context of optical mapping data, and present the first de Bruijn graph based method for Rmap assembly. We implement our approach, which we refer to as rmapper, and compare its performance against the assembler of Valouev et al. (Proc Natl Acad Sci USA 103(43):15770–15775, 2006) and Solve by Bionano Genomics on data from three genomes: E. coli, human, and climbing perch fish (Anabas Testudineus). Our method was able to successfully run on all three genomes. The method of Valouev et al. (Proc Natl Acad Sci USA 103(43):15770–15775, 2006) only successfully ran on E. coli. Moreover, on the human genome rmapper was at least 130 times faster than Bionano Solve, used five times less memory and produced the highest genome fraction with zero mis-assemblies. Our software, rmapper is written in C++ and is publicly available under GNU General Public License at https://github.com/kingufl/Rmapper .
  • Mukherjee, Kingshuk; Rossi, Massimiliano; Salmela, Leena; Boucher, Christina (2021)
    Genome wide optical maps are high resolution restriction maps that give a unique numeric representation to a genome. They are produced by assembling hundreds of thousands of single molecule optical maps, which are called Rmaps. Unfortunately, there are very few choices for assembling Rmap data. There exists only one publicly-available non-proprietary method for assembly and one proprietary software that is available via an executable. Furthermore, the publicly-available method, by Valouev et al. (Proc Natl Acad Sci USA 103(43):15770-15775, 2006), follows the overlap-layout-consensus (OLC) paradigm, and therefore, is unable to scale for relatively large genomes. The algorithm behind the proprietary method, Bionano Genomics' Solve, is largely unknown. In this paper, we extend the definition of bi-labels in the paired de Bruijn graph to the context of optical mapping data, and present the first de Bruijn graph based method for Rmap assembly. We implement our approach, which we refer to as rmapper, and compare its performance against the assembler of Valouev et al. (Proc Natl Acad Sci USA 103(43):15770-15775, 2006) and Solve by Bionano Genomics on data from three genomes: E. coli, human, and climbing perch fish (Anabas Testudineus). Our method was able to successfully run on all three genomes. The method of Valouev et al. (Proc Natl Acad Sci USA 103(43):15770-15775, 2006) only successfully ran on E. coli. Moreover, on the human genome rmapper was at least 130 times faster than Bionano Solve, used five times less memory and produced the highest genome fraction with zero mis-assemblies. Our software, rmapper is written in C++ and is publicly available under GNU General Public License at .
  • Muggli, Martin D; Puglisi, Simon J; Boucher, Christina (BioMed Central, 2019)
    Abstract Background Genome-wide optical maps are ordered high-resolution restriction maps that give the position of occurrence of restriction cut sites corresponding to one or more restriction enzymes. These genome-wide optical maps are assembled using an overlap-layout-consensus approach using raw optical map data, which are referred to as Rmaps. Due to the high error-rate of Rmap data, finding the overlap between Rmaps remains challenging. Results We present Kohdista, which is an index-based algorithm for finding pairwise alignments between single molecule maps (Rmaps). The novelty of our approach is the formulation of the alignment problem as automaton path matching, and the application of modern index-based data structures. In particular, we combine the use of the Generalized Compressed Suffix Array (GCSA) index with the wavelet tree in order to build Kohdista. We validate Kohdista on simulated E. coli data, showing the approach successfully finds alignments between Rmaps simulated from overlapping genomic regions. Conclusion we demonstrate Kohdista is the only method that is capable of finding a significant number of high quality pairwise Rmap alignments for large eukaryote organisms in reasonable time.
  • Muggli, M.D.; Puglisi, S.J.; Boucher, C. (2019)
    Background: Genome-wide optical maps are ordered high-resolution restriction maps that give the position of occurrence of restriction cut sites corresponding to one or more restriction enzymes. These genome-wide optical maps are assembled using an overlap-layout-consensus approach using raw optical map data, which are referred to as Rmaps. Due to the high error-rate of Rmap data, finding the overlap between Rmaps remains challenging. Results: We present Kohdista, which is an index-based algorithm for finding pairwise alignments between single molecule maps (Rmaps). The novelty of our approach is the formulation of the alignment problem as automaton path matching, and the application of modern index-based data structures. In particular, we combine the use of the Generalized Compressed Suffix Array (GCSA) index with the wavelet tree in order to build Kohdista. We validate Kohdista on simulated E. coli data, showing the approach successfully finds alignments between Rmaps simulated from overlapping genomic regions. Conclusion: we demonstrate Kohdista is the only method that is capable of finding a significant number of high quality pairwise Rmap alignments for large eukaryote organisms in reasonable time. © 2019 The Author(s).
  • Leinonen, Miika; Salmela, Leena (2020)
    Background The long reads produced by third generation sequencing technologies have significantly boosted the results of genome assembly but still, genome-wide assemblies solely based on read data cannot be produced. Thus, for example, optical mapping data has been used to further improve genome assemblies but it has mostly been applied in a post-processing stage after contig assembly. Results We proposeOpticalKermitwhich directly integrates genome wide optical maps into contig assembly. We show how genome wide optical maps can be used to localize reads on the genome and then we adapt the Kermit method, which originally incorporated genetic linkage maps to the miniasm assembler, to use this information in contig assembly. Our experimental results show that incorporating genome wide optical maps to the contig assembly of miniasm increases NGA50 while the number of misassemblies decreases or stays the same. Furthermore, when compared to the Canu assembler,OpticalKermitproduces an assembly with almost three times higher NGA50 with a lower number of misassemblies on realA. thalianareads. Conclusions OpticalKermitsuccessfully incorporates optical mapping data directly to contig assembly of eukaryotic genomes. Our results show that this is a promising approach to improve the contiguity of genome assemblies.
  • Leinonen, Miika; Salmela, Leena (BioMed Central, 2020)
    Abstract Background The long reads produced by third generation sequencing technologies have significantly boosted the results of genome assembly but still, genome-wide assemblies solely based on read data cannot be produced. Thus, for example, optical mapping data has been used to further improve genome assemblies but it has mostly been applied in a post-processing stage after contig assembly. Results We propose OpticalKermit which directly integrates genome wide optical maps into contig assembly. We show how genome wide optical maps can be used to localize reads on the genome and then we adapt the Kermit method, which originally incorporated genetic linkage maps to the miniasm assembler, to use this information in contig assembly. Our experimental results show that incorporating genome wide optical maps to the contig assembly of miniasm increases NGA50 while the number of misassemblies decreases or stays the same. Furthermore, when compared to the Canu assembler, OpticalKermit produces an assembly with almost three times higher NGA50 with a lower number of misassemblies on real A. thaliana reads. Conclusions OpticalKermit successfully incorporates optical mapping data directly to contig assembly of eukaryotic genomes. Our results show that this is a promising approach to improve the contiguity of genome assemblies.