Browsing by Subject "PARIETAL"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Cowley, Benjamin Ultan; Juurmaa, Kristiina; Palomaki, Jussi (2022)
    Attention-deficit/hyperactivity disorder (ADHD) in adults is understudied, especially regarding neural mechanisms such as oscillatory control of attention sampling. We report an electroencephalography (EEG) study of such cortical mechanisms, in ADHD-diagnosed adults during administration of Test of Variables of Attention (TOVA), a gold-standard continuous performance test for ADHD that measures the ability to sustain attention and inhibit impulsivity. We recorded 53 adults (28 female, 25 male, aged 18-60), and 18 matched healthy controls, using 128-channel EEG. We analyzed sensor-space features established as neural correlates of attention: timing-sensitivity and phase-synchrony of response activations, and event-related (de)synchronization (ERS/D) of alpha and theta frequency band activity; in frontal and parietal scalp regions. TOVA test performance significantly distinguished ADHD adults from neurotypical controls, in commission errors, response time variability (RTV) and d' (response sensitivity). The ADHD group showed significantly weaker target-locked and responselocked amplitudes, that were strongly right-lateralized at the N2 wave, and weaker phase synchrony (longer reset poststimulus). They also manifested significantly less parietal prestimulus 8-Hz theta ERS, less frontal and parietal poststimulus 4-Hz theta ERS, and more frontal and parietal prestimulus alpha ERS during correct trials. These differences may reflect excessive modulation of endogenous activity by strong entrainment to stimulus (alpha), combined with deficient modulation by neural entrainment to task (theta), which in TOVA involves monitoring stimulus spatial location (not predicted occurrence onset which is regular and task-irrelevant). Building on the hypotheses of theta coding for relational structure and rhythmic attention sampling, our results suggest that ADHD adults have impaired attention sampling in relational categorization tasks.
  • Rouhinen, Santeri; Siebenhühner, Felix; Palva, J. Matias; Palva, Satu (2020)
    The capacity of visual attention determines how many visual objects may be perceived at any moment. This capacity can be investigated with multiple object tracking (MOT) tasks, which have shown that it varies greatly between individuals. The neuronal mechanisms underlying capacity limits have remained poorly understood. Phase synchronization of cortical oscillations coordinates neuronal communication within the fronto-parietal attention network and between the visual regions during endogenous visual attention. We tested a hypothesis that attentional capacity is predicted by the strength of pretarget synchronization within attention-related cortical regions. We recorded cortical activity with magneto- and electroencephalography (M/EEG) while measuring attentional capacity with MOT tasks and identified large-scale synchronized networks from source-reconstructed M/EEG data. Individual attentional capacity was correlated with load-dependent strengthening of theta (3-8 Hz), alpha (8-10 Hz), and gamma-band (30-120 Hz) synchronization that connected the visual cortex with posterior parietal and prefrontal cortices. Individual memory capacity was also preceded by crossfrequency phase-phase and phase-amplitude coupling of alpha oscillation phase with beta and gamma oscillations. Our results show that good attentional capacity is preceded by efficient dynamic functional coupling and decoupling within brain regions and across frequencies, which may enable efficient communication and routing of information between sensory and attentional systems.
  • Mehl, Nora; Morys, Filip; Villringer, Arno; Horstmann, Annette (2019)
    Obesity is associated with automatically approaching problematic stimuli, such as unhealthy food. Cognitive bias modification (CBM) could beneficially impact problematic approach behavior. However, it is unclear which mechanisms are targeted by CBM in obesity. Candidate mechanisms include: (1) altering reward value of food stimuli; and (2) strengthening inhibitory abilities. Thirty-three obese adults completed either CBM or sham training during functional magnetic resonance imaging (fMRI) scanning. CBM consisted of implicit training to approach healthy and avoid unhealthy foods. At baseline, approach tendencies towards food were present in all participants. Avoiding vs. approaching food was associated with higher activity in the right angular gyrus (rAG). CBM resulted in a diminished approach bias towards unhealthy food, decreased activation in the rAG, and increased activation in the anterior cingulate cortex. Relatedly, functional connectivity between the rAG and right superior frontal gyrus increased. Analysis of brain connectivity during rest revealed training-related connectivity changes of the inferior frontal gyrus and bilateral middle frontal gyri. Taken together, CBM strengthens avoidance tendencies when faced with unhealthy foods and alters activity in brain regions underpinning behavioral inhibition.