Browsing by Subject "PARKINSON DISEASE"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Raj, Rahul; Kaprio, Jaakko; Korja, Miikka; Mikkonen, Era D.; Jousilahti, Pekka; Siironen, Jari (2017)
    Background Previous epidemiological studies suggest that working-aged persons with a history of moderate-to-severe traumatic brain injury (TBI) may have an increased risk for developing neurodegenerative disease (NDD) while persons with a history of mild TBI do not. In this comprehensive nationwide study in Finland, we assessed the risk of NDD and history of moderate-to-severe TBI in the working-age population. Methods and findings We performed a population-based follow-up study using the Finnish Care Register for Health Care to identify all persons between the ages of 18 and 65 years hospitalized during 1987-2014 due to TBI who did not have a baseline NDD diagnosis. We compared the risk of hospitalization with NDD between persons hospitalized due to moderate-to-severe TBI (intracranial lesions) and persons hospitalized due to mild TBI (no intracranial lesions). Follow-up NDD diagnoses were recorded from 1 year following the TBI to the end of 2014. NDD diagnoses included dementia, Parkinson disease, and amyotrophic lateral sclerosis. We used a Cox proportional hazards model, adjusting for age, sex, education, and socioeconomic group, to assess the association between TBI and NDD. In total, 19,936 and 20,703 persons with a history of moderate-to-severe TBI and mild TBI, respectively, were included. The overall time at risk was 453,079 person-years (median 10 years per person). In total, 3.5% (N = 696) persons in the moderate-to-severe TBI group developed NDD compared to 1.6% (N = 326) in the mild TBI group. After adjusting for covariates, moderate-to-severe TBI was associated with an increased risk for NDD, with a hazard ratio (HR) of 1.8 (95% CI 1.6-2.1) compared to mild TBI. Of the NDD subtypes, only moderate-to-severe TBI was associated with an increased risk for dementia (HR 1.9, 95% CI 1.6-2.2). Yet, this large-scale epidemiological study does not prove that there is a causal relationship between moderate-to-severe TBI and NDD. Further, the Care Register for Health Care includes only hospitalized persons; thus, patients diagnosed with NDD in the outpatient setting may have been missed. Additional limitations include the potential for miscoding and unmeasured confounds. Conclusions In working-aged persons, a history of moderate-to-severe TBI is associated with an increased risk for future dementia but not for Parkinson disease or amyotrophic lateral sclerosis.
  • Sidorova, Yulia A.; Saarma, Mart (2020)
    Glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) are able to promote the survival of multiple neuronal populations in the body and, therefore, hold considerable promise for disease-modifying treatments of diseases and conditions caused by neurodegeneration. Available data reveal the potential of GFLs for the therapy of Parkinson's disease, neuropathic pain and diseases caused by retinal degeneration but, also, amyotrophic lateral sclerosis and, possibly, Alzheimer's disease. Despite promising data collected in preclinical models, clinical translation of GFLs is yet to be conducted. The main reasons for the limited success of GFLs clinical development are the poor pharmacological characteristics of GFL proteins, such as the inability of GFLs to cross tissue barriers, poor diffusion in tissues, biphasic dose-response and activation of several receptors in the organism in different cell types, along with ethical limitations on patients' selection in clinical trials. The development of small molecules selectively targeting particular GFL receptors with improved pharmacokinetic properties can overcome many of the difficulties and limitations associated with the clinical use of GFL proteins. The current review lists several strategies to target the GFL receptor complex with drug-like molecules, discusses their advantages, provides an overview of available chemical scaffolds and peptides able to activate GFL receptors and describes the effects of these molecules in cultured cells and animal models.