Browsing by Subject "PARTICLE MESH EWALD"

Sort by: Order: Results:

Now showing items 1-11 of 11
  • Javanainen, Matti; Lamberg, Antti; Cwiklik, Lukasz; Vattulainen, Ilpo Tapio; Ollila, Samuli (2018)
    Lung surfactant and a tear film lipid layer are examples of biologically relevant macromolecular structures found at the air–water interface. Because of their complexity, they are often studied in terms of simplified lipid layers, the simplest example being a Langmuir monolayer. Given the profound biological significance of these lipid assemblies, there is a need to understand their structure and dynamics on the nanoscale, yet there are not many techniques able to provide this information. Atomistic molecular dynamics simulations would be a tool fit for this purpose; however, the simulation models suggested until now have been qualitative instead of quantitative. This limitation has mainly stemmed from the challenge to correctly describe the surface tension of water with simulation parameters compatible with other biomolecules. In this work, we show that this limitation can be overcome by using the recently introduced four-point OPC water model, whose surface tension for water is demonstrated to be quantitatively consistent with experimental data and which is also shown to be compatible with the commonly employed lipid models. We further establish that the approach of combining the OPC four-point water model with the CHARMM36 lipid force field provides nearly quantitative agreement with experiments for the surface pressure–area isotherm for POPC and DPPC monolayers, also including the experimentally observed phase coexistence in a DPPC monolayer. The simulation models reported in this work pave the way for nearly quantitative atomistic studies of lipid-rich biological structures at air–water interfaces.
  • Poojari, Chetan; Wilkosz, Natalia; Lira, Rafael B.; Dimova, Rumiana; Jurkiewicz, Piotr; Petka, Rafal; Kepczynski, Mariusz; Rog, Tomasz (2019)
    1,6-Diphenyl-1,3,5-hexatriene (DPH) is one of the most commonly used fluorescent probes to study dynamical and structural properties of lipid bilayers and cellular membranes via measuring steady-state or time-resolved fluorescence anisotropy. In this study, we present a limitation in the use of DPH to predict the order of lipid acyl chains when the lipid bilayer is doped with itraconazole (ITZ), an antifungal drug. Our steady-state fluorescence anisotropy measurements showed a significant decrease in fluorescence anisotropy of DPH embedded in the ITZ-containing membrane, suggesting a substantial increase in membrane fluidity, which indirectly indicates a decrease in the order of the hydrocarbon chains. This result or its interpretation is in disagreement with the fluorescence recovery after photobleaching measurements and molecular dynamics (MD) simulation data. The results of these experiments and calculations indicate an increase in the hydrocarbon chain order. The MD simulations of the bilayer containing both ITZ and DPH provide explanations for these observations. Apparently, in the presence of the drug, the DPH molecules are pushed deeper into the hydrophobic membrane core below the lipid double bonds, and the probe predominately adopts the orientation of the ITZ molecules that is parallel to the membrane surface, instead of orienting parallel to the lipid acyl chains. For this reason, DPH anisotropy provides information related to the less ordered central region of the membrane rather than reporting the properties of the upper segments of the lipid acyl chains.
  • Poojari, Chetan; Zak, Agata; Dzieciuch-Rojek, Monika; Bunker, Alex; Kepczynski, Mariusz; Rog, Tomasz (2020)
    Cholesterol plays a crucial role in modulating the physicochemical properties of biomembranes, both increasing mechanical strength and decreasing permeability. Cholesterol is also a common component of vesicle-based delivery systems, including liposome-based drug delivery systems (LDSs). However, its effect on the partitioning of drug molecules to lipid membranes is very poorly recognized. Herein, we performed a combined experimental/computational study of the potential for the use of the LDS formulation for the delivery of the antifungal drug itraconazole (ITZ). We consider the addition of cholesterol to the lipid membrane. Since ITZ is only weakly soluble in water, its bioavailability is limited. Use of an LDS has thus been proposed. We studied lipid membranes composed of cholesterol, 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (POPC), and ITZ using a combination of computational molecular dynamics (MD) simulations of lipid bilayers and Brewster angle microscopy (BAM) experiments of monolayers. Both experimental and computational results show separation of cholesterol and ITZ. Cholesterol has a strong preference to orient parallel to the bilayer normal. However, ITZ, a long and relatively rigid molecule with weakly hydrophilic groups along the backbone, predominantly locates below the interface between the hydrocarbon chain region and the polar region of the membrane, with its backbone oriented parallel to the membrane surface; the orthogonal orientation in the membrane could be the cause of the observed separation. In addition, fluorescence measurements demonstrated that the affinity of ITZ for the lipid membrane is decreased by the presence of cholesterol, which is thus probably not a suitable formulation component of an LDS designed for ITZ delivery.
  • Enkavi, Giray; Mikkolainen, Heikki; Gungor, Burcin; Ikonen, Elina; Vattulainen, Ilpo (2017)
    Niemann-Pick Protein C2 (NPC2) is a small soluble protein critical for cholesterol transport within and from the lysosome and the late endosome. Intriguingly, NPC2-mediated cholesterol transport has been shown to be modulated by lipids, yet the molecular mechanism of NPC2-membrane interactions has remained elusive. Here, based on an extensive set of atomistic simulations and free energy calculations, we clarify the mechanism and energetics of NPC2-membrane binding and characterize the roles of physiologically relevant key lipids associated with the binding process. Our results capture in atomistic detail two competitively favorable membrane binding orientations of NPC2 with a low interconversion barrier. The first binding mode (Prone) places the cholesterol binding pocket in direct contact with the membrane and is characterized by membrane insertion of a loop (V59-M60-G61-I62-P63-V64P65). This mode is associated with cholesterol uptake and release. On the other hand, the second mode (Supine) places the cholesterol binding pocket away from the membrane surface, but has overall higher membrane binding affinity. We determined that bis(monoacylglycero) phosphate (BMP) is specifically required for strong membrane binding in Prone mode, and that it cannot be substituted by other anionic lipids. Meanwhile, sphingomyelin counteracts BMP by hindering Prone mode without affecting Supine mode. Our results provide concrete evidence that lipids modulate NPC2-mediated cholesterol transport either by favoring or disfavoring Prone mode and that they impose this by modulating the accessibility of BMP for interacting with NPC2. Overall, we provide a mechanism by which NPC2-mediated cholesterol transport is controlled by the membrane composition and how NPC2-lipid interactions can regulate the transport rate.
  • Kasparyan, Gari; Poojari, Chetan; Rog, Tomasz; Hub, Jochen S. (2020)
    Itraconazole is a triazole drug widely used in the treatment of fungal infections, and it is in clinical trials for treatment of several cancers. However, the drug suffers from poor solubility, while experiments have shown that itraconazole delivery in liposome nanocarriers improves both circulation half-life and tissue distribution. The drug release mechanism from the nanocarrier is still unknown, and it depends on several factors including membrane stability against defect formation. In this work, we used molecular dynamics simulations and potential of mean force (PMF) calculations to quantify the influence of itraconazole on pore formation over lipid membranes, and we compared the effect by itraconazole with a pore-stabilizing effect by the organic solvent dimethyl sulfoxide (DMSO). According to the PMFs, both itraconazole and DMSO greatly reduce the free energy of pore formation, by up to similar to 20 kJ mol(-1). However, whereas large concentrations of itraconazole of 8 mol % (relative to lipid) were required, only small concentrations of a few mole % DMSO (relative to water) were sufficient to stabilize pores. In addition, itraconazole and DMSO facilitate pore formation by different mechanisms. Whereas itraconazole predominantly aids the formation of a partial defect with a locally thinned membrane, DMSO mainly stabilizes a transmembrane water needle by shielding it from the hydrophobic core. Notably, the two distinct mechanisms act cooperatively upon adding both itraconazole and DMSO to the membrane, as revealed by an additional reduction of the pore free energy. Overall, our simulations reveal molecular mechanisms and free energies of membrane pore formation by small molecules. We suggest that the stabilization of a locally thinned membrane as well as the shielding of a transmembrane water needle from the hydrophobic membrane core may be a general mechanism by which amphiphilic molecules facilitate pore formation over lipid membranes at sufficient concentrations.
  • Steringer, Julia P.; Lange, Sascha; Cujova, Sabina; Sachi, Radek; Poojari, Chetan; Lolicato, Fabio; Beutel, Oliver; Mueller, Hans-Michael; Unger, Sebastian; Coskun, Uenal; Honigmann, Alf; Vattulainen, Ilpo; Hof, Martin; Freund, Christian; Nickel, Walter (2017)
    FGF2 is secreted from cells by an unconventional secretory pathway. This process is mediated by direct translocation across the plasma membrane. Here, we define the minimal molecular machinery required for FGF2 membrane translocation in a fully reconstituted inside-out vesicle system. FGF2 membrane translocation is thermodynamically driven by PI(4,5)P-2-induced membrane insertion of FGF2 oligomers. The latter serve as dynamic translocation intermediates of FGF2 with a subunit number in the range of 8-12 FGF2 molecules. Vectorial translocation of FGF2 across the membrane is governed by sequential and mutually exclusive interactions with PI(4,5)P-2 and heparan sulfates on opposing sides of the membrane. Based on atomistic molecular dynamics simulations, we propose a mechanism that drives PI(4,5)P-2 dependent oligomerization of FGF2. Our combined findings establish a novel type of self-sustained protein translocation across membranes revealing the molecular basis of the unconventional secretory pathway of FGF2.
  • Mahmoudzadeh, Mohammad; Magarkar, Aniket; Koivuniemi, Artturi; Róg, Tomasz; Bunker, Alex (2021)
    Liposome-based drug delivery systems composed of DOPE stabilized with cholesteryl hemisuccinate (CHMS) have been proposed as a drug delivery mechanism with pH-triggered release as the anionic form (CHSa) is protonated (CHS) at reduced pH; PEGylation is known to decrease this pH sensitivity. In this manuscript, we set out to use molecular dynamics (MD) simulations with a model with all-atom resolution to provide insight into why incorporation of poly(ethyleneglycol) (PEG) into DOPE–CHMS liposomes reduces their pH sensitivity; we also address two additional questions: (1) How CHSa stabilizes DOPE bilayers into a lamellar conformation at a physiological pH of 7.4? and (2) how the change from CHSa to CHS at acidic pH triggers the destabilization of DOPE bilayers? We found that (A) CHSa stabilizes the DOPE lipid membrane by increasing the hydrophilicity of the bilayer surface, (B) when CHSa changes to CHS by pH reduction, DOPE bilayers are destabilized due to a reduction in bilayer hydrophilicity and a reduction in the area per lipid, and (C) PEG stabilizes DOPE bilayers into the lamellar phase, thus reducing the pH sensitivity of the liposomes by increasing the area per lipid through penetration into the bilayer, which is our main focus.
  • Lolicato, Fabio; Juhola, Hanna; Zak, Agata; Postila, Pekka A.; Saukko, Annina; Rissanen, Sami; Enkavi, Giray; Vattulainen, Ilpo; Kepczynski, Mariusz; Rog, Tomasz (2020)
    Synaptic neurotransmission has recently been proposed to function via either a membrane-independent or a membrane-dependent mechanism, depending on the neurotransmitter type. In the membrane-dependent mechanism, amphipathic neurotransmitters first partition to the lipid headgroup region and then diffuse along the membrane plane to their membrane-buried receptors. However, to date, this mechanism has not been demonstrated for any neurotransmitter-receptor complex. Here, we combined isothermal calorimetry measurements with a diverse set of molecular dynamics simulation methods to investigate the partitioning of an amphipathic neurotransmitter (dopamine) and the mechanism of its entry into the ligand-binding site. Our results show that the binding of dopamine to its receptor is consistent with the membrane-dependent binding and entry mechanism. Both experimental and simulation results showed that dopamine favors binding to lipid membranes especially in the headgroup region. Moreover, our simulations revealed a ligand-entry pathway from the membrane to the binding site. This pathway passes through a lateral gate between transmembrane alpha-helices 5 and 6 on the membrane-facing side of the protein. All in all, our results demonstrate that dopamine binds to its receptor by a membrane-dependent mechanism, and this is complemented by the more traditional binding mechanism directly through the aqueous phase. The results suggest that the membrane-dependent mechanism is common in other synaptic receptors, too.
  • Oeemig, Jesper S.; Ollila, O.H. Samuli; Iwaï, Hideo (2018)
    The TonB protein plays an essential role in the energy transduction system to drive active transport across the outer membrane (OM) using the proton-motive force of the cytoplasmic membrane of Gram-negative bacteria. The C-terminal domain (CTD) of TonB protein is known to interact with the conserved TonB box motif of TonB-dependent OM transporters, which likely induces structural changes in the OM transporters. Several distinct conformations of differently dissected CTDs of Escherichia coli TonB have been previously reported. Here we determined the solution NMR structure of a 96-residue fragment of Pseudomonas aeruginosa TonB (PaTonB-96). The structure shows a monomeric structure with the flexible C-terminal region (residues 338-342), different from the NMR structure of E. coli TonB (EcTonB-137). The extended and flexible C-terminal residues are confirmed by N-15 relaxation analysis and molecular dynamics simulation. We created models for the PaTonB-96/TonB box interaction and propose that the internal fluctuations of PaTonB-96 makes it more accessible for the interactions with the TonB box and possibly plays a role in disrupting the plug domain of the TonB-dependent OM transporters.
  • Ollila, Samuli; Heikkinen, Harri August; Iwaï, Hideo (2018)
    Conformational fluctuations and rotational tumbling of proteins can be experimentally accessed with nuclear spin relaxation experiments. However, interpretation of molecular dynamics from the experimental data is often complicated, especially for molecules with anisotropic shape. Here, we apply classical molecular dynamics simulations to interpret the conformational fluctuations and rotational tumbling of proteins with arbitrarily anisotropic shape. The direct calculation of spin relaxation times from simulation data did not reproduce the experimental data. This was successfully corrected by scaling the overall rotational diffusion coefficients around the protein inertia axes with a constant factor. The achieved good agreement with experiments allowed the interpretation of the internal and overall dynamics of proteins with significantly anisotropic shape. The overall rotational diffusion was found to be Brownian, having only a short subdiffusive region below 0.12 ns. The presented methodology can be applied to interpret rotational dynamics and conformation fluctuations of proteins with arbitrary anisotropic shape. However, a water model with more realistic dynamical properties is probably required for intrinsically disordered proteins.
  • Beyer, Hannes M.; Virtanen, Salla; Aranko, A. Sesilja; Mikula, Kornelia M.; Lountos, George T.; Wlodawer, Alexander; Ollila, O.H. Samuli; Iwai, Hideo (2020)
    Protein splicing catalyzed by inteins utilizes many different combinations of amino-acid types at active sites. Inteins have been classified into three classes based on their characteristic sequences. We investigated the structural basis of the protein splicing mechanism of class 3 inteins by determining crystal structures of variants of a class 3 intein from Mycobacterium chimaera and molecular dynamics simulations, which suggested that the class 3 intein utilizes a different splicing mechanism from that of class 1 and 2 inteins. The class 3 intein uses a bond cleavage strategy reminiscent of proteases but share the same Hedgehog/INTein (HINT) fold of other intein classes. Engineering of class 3 inteins from a class 1 intein indicated that a class 3 intein would unlikely evolve directly from a class 1 or 2 intein. The HINT fold appears as structural and functional solution for trans-peptidyl and trans-esterification reactions commonly exploited by diverse mechanisms using different combinations of amino-acid types for the active-site residues.