Sort by: Order: Results:

Now showing items 1-4 of 4
  • Galluzzi, Lorenzo; Vitale, Ilio; Warren, Sarah; Adjemian, Sandy; Agostinis, Patrizia; Martinez, Aitziber Buqué; Chan, Timothy A; Coukos, George; Demaria, Sandra; Deutsch, Eric; Draganov, Dobrin; Edelson, Richard L; Formenti, Silvia C; Fucikova, Jitka; Gabriele, Lucia; Gaipl, Udo S; Gameiro, Sofia R; Garg, Abhishek D; Golden, Encouse; Han, Jian; Harrington, Kevin J; Hemminki, Akseli; Hodge, James W; Hossain, Dewan Md Sakib; Illidge, Tim; Karin, Michael; Kaufman, Howard L; Kepp, Oliver; Kroemer, Guido; Lasarte, Juan Jose; Loi, Sherene; Lotze, Michael T; Manic, Gwenola; Merghoub, Taha; Melcher, Alan A; Mossman, Karen L; Prosper, Felipe; Rekdal, Øystein; Rescigno, Maria; Riganti, Chiara; Sistigu, Antonella; Smyth, Mark J; Spisek, Radek; Stagg, John; Strauss, Bryan E; Tang, Daolin; Tatsuno, Kazuki; van Gool, Stefaan W; Vandenabeele, Peter; Yamazaki, Takahiro; Zamarin, Dmitriy; Zitvogel, Laurence; Cesano, Alessandra; Marincola, Francesco M (2020)
    Cells succumbing to stress via regulated cell death (RCD) can initiate an adaptive immune response associated with immunological memory, provided they display sufficient antigenicity and adjuvanticity. Moreover, multiple intracellular and microenvironmental features determine the propensity of RCD to drive adaptive immunity. Here, we provide an updated operational definition of immunogenic cell death (ICD), discuss the key factors that dictate the ability of dying cells to drive an adaptive immune response, summarize experimental assays that are currently available for the assessment of ICD in vitro and in vivo, and formulate guidelines for their interpretation.
  • Deger, Aysin Guzel; Scherzer, Sönke; Nuhkat, Maris; Kedzierska, Justyna; Kollist, Hannes; Brosche, Mikael; Unyayar, Serpil; Boudsocq, Marie; Hedrich, Rainer; Roelfsema, M. Rob G. (2015)
    During infection plants recognize microbe-associated molecular patterns (MAMPs), and this leads to stomatal closure. This study analyzes the molecular mechanisms underlying this MAMP response and its interrelation with ABA signaling. Stomata in intact Arabidopsis thaliana plants were stimulated with the bacterial MAMP flg22, or the stress hormone ABA, by using the noninvasive nanoinfusion technique. Intracellular double-barreled microelectrodes were applied to measure the activity of plasma membrane ion channels. Flg22 induced rapid stomatal closure and stimulated the SLAC1 and SLAH3 anion channels in guard cells. Loss of both channels resulted in cells that lacked flg22-induced anion channel activity and stomata that did not close in response to flg22 or ABA. Rapid flg22-dependent stomatal closure was impaired in plants that were flagellin receptor (FLS2)-deficient, as well as in the ost1-2 (Open Stomata 1) mutant, which lacks a key ABA-signaling protein kinase. By contrast, stomata of the ABA protein phosphatase mutant abi1-1 (ABscisic acid Insensitive 1) remained flg22-responsive. These data suggest that the initial steps in flg22 and ABA signaling are different, but that the pathways merge at the level of OST1 and lead to activation of SLAC1 and SLAH3 anion channels.
  • Survila, Mantas; Davidsson, Pär R.; Pennanen, Ville; Kariola, Tarja; Broberg, Martin; Sipari, Nina; Heino, Pekka; Palva, Erkki T. (2016)
    Cuticular defects trigger a battery of reactions including enhanced reactive oxygen species (ROS) production and resistance to necrotrophic pathogens. However, the source of ROS generated by such impaired cuticles has remained elusive. Here, we report the characterization of Arabidopsis thaliana ohyl mutant, a Peroxidase 57 (PER57) - overexpressing line that demonstrates enhanced defense responses that result both from increased accumulation of ROS and permeability of the leaf cuticle. The ohyl mutant was identified in a screen of A. thaliana seedlings for oligogalacturonides (OGs) insensitive/hypersensitive mutants that exhibit altered growth retardation in response to exogenous OGs. Mutants impaired in OG sensitivity were analyzed for disease resistance/susceptibility to the necrotrophic phytopathogens Botrytis cinerea and Pectobacterium carotovorum. In the ohyl line, the hypersensitivity to OGs was associated with resistance to the tested pathogens. This PER57 overexpressing line exhibited a significantly more permeable leaf cuticle than wild-type plants and this phenotype could be recapitulated by overexpressing other class III peroxidases. Such peroxidase overexpression was accompanied by the suppressed expression of cutin biosynthesis genes and the enhanced expression of genes associated with OG-signaling. Application of ABA completely removed ROS, restored the expression of genes associated with cuticle biosynthesis and led to decreased permeability of the leaf cuticle, and finally, abolished immunity to B. cinerea. Our work demonstrates that increased peroxidase activity increases permeability of the leaf cuticle. The loss of cuticle integrity primes plant defenses to necrotrophic pathogens via the activation of DAMP-responses.
  • Durian, Guido; Rahikainen, Moona; Alegre, Sara; Brosche, Mikael; Kangasjarvi, Saijaliisa (2016)
    Biotic stress factors pose a major threat to plant health and can significantly deteriorate plant productivity by impairing the physiological functions of the plant. To combat the wide range of pathogens and insect herbivores, plants deploy converging signaling pathways, where counteracting activities of protein kinases and phosphatases form a basic mechanism for determining appropriate defensive measures. Recent studies have identified Protein Phosphatase 2A (PP2A) as a crucial component that controls pathogenesis responses in various plant species. Genetic, proteomic and metabolomic approaches have underscored the versatile nature of PP2A, which contributes to the regulation of receptor signaling, organellar signaling, gene expression, metabolic pathways, and cell death, all of which essentially impact plant immunity. Associated with this, various PP2A subunits mediate post-translational regulation of metabolic enzymes and signaling components. Here we provide an overview of protein kinase/phosphatase functions in plant immunity signaling, and position the multifaceted functions of PP2A in the tightly inter-connected regulatory network that controls the perception, signaling and responding to biotic stress agents in plants.