Browsing by Subject "PDFS"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Paakkinen, Petja; Eskola, Kari J.; Paukkunen, Hannu (2017)
    Despite the success of modern nuclear parton distribution functions (nPDFs) in describing nuclear hard-process data, they still suffer from large uncertainties. One of the poorly constrained features is the possible asymmetry in nuclear modifications of valence u and d quarks. We study the possibility of using pion-nucleus Drell-Yan dilepton data as a new constraint in the global analysis of nPDFs. We find that the nuclear cross-section ratios from the NA3, NA10 and E615 experiments can be used without imposing significant new theoretical uncertainties and, in particular, that these datasets may have some constraining power on the u/d-asymmetryin nuclei. (C) 2017 The Authors. Published by Elsevier B.V.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2018)
    The pseudorapidity distributions of dijets as functions of their average transverse momentum (p(T)(ave)) are measured in proton-lead (pPb) and proton-proton (pp) collisions. The data samples were collected by the CMS experiment at the CERN LHC, at a nucleon-nucleon center-of-mass energy of 5.02 TeV. A significant modification of the pPb spectra with respect to the pp spectra is observed in all p(T)(ave) intervals investigated. The ratios of the pPb and pp distributions are compared to next-to-leading order perturbative quantum chromodynamics calculations with unbound nucleon and nuclear parton distribution functions (PDFs). These results give the first evidence that the gluon PDF at large Bjorken x in lead ions is strongly suppressed with respect to the PDF in unbound nucleons.
  • Aschenauer, E. C.; Fazio, S.; Lamont, M. A. C.; Paukkunen, H.; Zurita, P. (2017)
    The quantitative knowledge of heavy nuclei's partonic structure is currently limited to rather large values of momentum fraction x-robust experimental constraints below x similar to 10(-2) at low resolution scale Q(2) are particularly scarce. This is in sharp contrast to the free proton's structure which has been probed in Deep Inelastic Scattering (DIS) measurements down to x similar to 10(-5) at perturbative resolution scales. The construction of an electron-ion collider (EIC) with a possibility to operate with a wide variety of nuclei, will allow one to explore the low-x region in much greater detail. In the present paper we simulate the extraction of the nuclear structure functions from measurements of inclusive and charm reduced cross sections at an EIC. The potential constraints are studied by analyzing simulated data directly in a next-toleading order global fit of nuclear Parton Distribution Functions based on the recent EPPS16 analysis. A special emphasis is placed on studying the impact an EIC would have on extracting the nuclear gluon parton distribution function, the partonic component most prone to nonlinear effects at low Q(2). In comparison to the current knowledge, we find that the gluon parton distribution function can be measured at an EIC with significantly reduced uncertainties.