Browsing by Subject "PENNING TRAPS"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Vilen, M.; Kankainen, A.; Baczyk, P.; Canete, L.; Dobaczewski, J.; Eronen, T.; Geldhof, S.; Jokinen, A.; Konieczka, M.; Kostensalo, J.; Moore, I. D.; Nesterenko, D. A.; Penttilä, H.; Pohjalainen, I.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Satula, W.; Suhonen, J. (2019)
    An upgraded ion-guide system for the production of neutron-deficient isotopes with heavy-ion beams has been commissioned at the IGISOL facility with an Ar-36 beam on a Ni-nat target. It was used together with the JYFLTRAP double Penning trap to measure the masses of Zr-82, Nb-84, Mo-86, Tc-88, and Ru-89 ground states and the isomeric state Tc-88(m). Of these, Ru-89 and Tc-88(m) weremeasured for the first time. The precision of measurements of Zr-82, Nb-84, and Tc-88 was significantly improved. The literature value for Mo-86 was verified. The measured states in Tc-88 were compared to shell-model calculations and additional constraints on the spins and level scheme were obtained. The masses of Mo-82 and Ru-86 have been predicted using the measured masses of their mirror partners and theoretical mirror displacement energies, resulting in more tightly bound nuclei with smaller atomic mass uncertainties than reported in the literature.
  • Nesterenko, D. A.; Kankainen, A.; Canete, L.; Block, M.; Cox, D.; Eronen, T.; Fahlander, C.; Forsberg, U.; Gerl, J.; Golubev, P.; Hakala, J.; Jokinen, A.; Kolhinen, V. S.; Koponen, J.; Lalovic, N.; Lorenz, Ch; Moore, I. D.; Papadakis, P.; Reinikainen, J.; Rinta-Antila, S.; Rudolph, D.; Sarmiento, L. G.; Voss, A.; Äystö, J. (2017)
    Masses of Co-52, (52)Com, Fe-52, Fe-52(m), and Mn-52 have been measured with the JYFLTRAP double Penning trap mass spectrometer. The isobaric multiplet mass equation for the T = 2 quintet at A = 52 has been studied employing the new mass values. No significant breakdown (beyond the 3 sigma level) of the quadratic form of the IMME was observed (chi(2)/n = 2.4). The cubic coefficient was 6.0(32) keV (chi(2)/n = 1.1). The excitation energies for the isomer and the T = 2 isobaric analog state in Co-52 have been determined to be 374(13) keV and 2922(13) keV, respectively. The measured mass values for Co-52 and (52)Com are 29(10) keV and 16(15) keV higher, respectively, than obtained in a recent storage-ring experiment, and significantly lower than predicted by extrapolations. Consequently, this has an impact on the proton separation energies for Co-52 and Ni-53 relevant for the astrophysical rapid proton capture process. The Q value for the proton decay from the 19/2(-) isomer in Co-53 has been determined with an unprecedented precision, Q(p) = 1558.8(17) keV.