Browsing by Subject "PEPTIDE"

Sort by: Order: Results:

Now showing items 1-18 of 18
  • Guzman, Erika Avendano; Bouter, Yvonne; Richard, Bernhard C.; Lannfelt, Lars; Ingelsson, Martin; Paetau, Anders; Verkkoniemi-Ahola, Auli; Wirths, Oliver; Bayer, Thomas A. (2014)
  • Hernandez-Perez, Sara; Vainio, Marika; Kuokkanen, Elina; Sustar, Vid; Petrov, Petar; Forsten, Sofia; Paavola, Vilma; Rajala, Johanna; Awoniyi, Luqman O.; Sarapulov, Alexey; Vihinen, Helena; Jokitalo, Eija; Bruckbauer, Andreas; Mattila, Pieta K. (2020)
    In order to mount high-affinity antibody responses, B cells internalise specific antigens and process them into peptides loaded onto MHCII for presentation to T helper cells (T H cells). While the biochemical principles of antigen processing and MHCII loading have been well dissected, how the endosomal vesicle system is wired to enable these specific functions remains much less studied. Here, we performed a systematic microscopy-based analysis of antigen trafficking in B cells to reveal its route to the MHCII peptide-loading compartment (MIIC). Surprisingly, we detected fast targeting of internalised antigen into peripheral acidic compartments that possessed the hallmarks of the MIIC and also showed degradative capacity. In these vesicles, intemalised antigen converged rapidly with membrane-derived MHCII and partially overlapped with cathepsin-S and H2-M, both required for peptide loading. These early compartments appeared heterogenous and atypical as they contained a mixture of both early and late endosomal markers, indicating a specialized endosomal route. Together, our data suggest that, in addition to in the previously reported perinuclear late endosomal MIICs, antigen processing and peptide loading could have already started in these specialized early peripheral acidic vesicles (eMlIC) to support fast peptide-MHCII presentation. This article has an associated First Person interview with the first author of the paper.
  • Virtanen, Helena; Silvola, Johanna M. U.; Autio, Anu; Li, Xiang-Guo; Liljenback, Heidi; Hellberg, Sanna; Siitonen, Riikka; Ståhle, Mia; Käkelä, Meeri; Airaksinen, Anu J.; Helariutta, Kerttuli; Tolvanen, Tuula; Veres, Tibor Z.; Saraste, Antti; Knuuti, Juhani; Jalkanen, Sirpa; Roivainen, Anne (2017)
    Sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) is a ligand of inflammation-inducible vascular adhesion protein-1 (VAP1). We compared Ga-68-DOTA-and F-18-fluorodeoxyribose-(FDR) labeled Siglec-9motif peptides for PET imaging of inflammation. Methods. Firstly, we examined Ga-68-DOTA-Siglec-9 and F-18-FDR-Siglec-9 in rats with skin/muscle inflammation. We then studied F-18-FDR-Siglec-9 for the detection of inflamed atherosclerotic plaques in mice and compared it with previous Ga-68-DOTA-Siglec-9 results. Lastly, we estimated human radiation dosimetry fromthe rat data. Results. In rats, Ga-68-DOTA-Siglec-9 (SUV, 0.88 +/- 0.087) and F-18-FDR-Siglec-9 (SUV, 0.77 +/- 0.22) showed comparable (P = 0.29) imaging of inflammation. In atherosclerotic mice, 18 FFDR- Siglec-9 detected inflamed plaques with a target-to-background ratio (1.6 1/8 0.078) similar to previously tested Ga-68-DOTASiglec- 9 (P = 0.35). Humaneffectivedose estimates for Ga-68-DOTA-Siglec-9 and (18) F-FDR-Siglec-9were 0.024 and 0.022 mSv/MBq, respectively. Conclusion. Both tracers are suitable for PET imaging of inflammation. The easier production and lower cost of (68)GaDOTA-Siglec-9 present advantages over F-18-FDR-Siglec-9, indicating it as a primary choice for clinical studies.
  • Yohannes, Dawit A.; de Kauwe, Andrea; Kaukinen, Katri; Kurppa, Kalle; Mäki, Markku; Anderson, Robert P.; Linnarsson, Sten; Greco, Dario; Saavalainen, Päivi (2020)
    The pathological mechanisms that lead to the onset and reactivation of celiac disease (CD) remain largely unknown. While gluten free diet (GFD) improves the intestinal damage and associated clinical symptoms in majority of cases, it falls short of providing full recovery. Additionally, late or misdiagnosis is also common as CD presents with a wide range of symptoms. Clear understanding of CD pathogenesis is thus critical to address both diagnostic and treatment concerns. We aimed to study the molecular impact of short gluten exposure in GFD treated CD patients, as well as identify biological pathways that remain altered constitutively in CD regardless of treatment. Using RNAseq profiling of PBMC samples collected from treated CD patients and gluten challenged patient and healthy controls, we explored the peripheral transcriptome in CD patients following a short gluten exposure. Short gluten exposure of just three days was enough to alter the genome-wide PBMC transcriptome of patients. Pathway analysis revealed gluten-induced upregulation of mainly immune response related pathways, both innate and adaptive, in CD patients. We evaluated the perturbation of biological pathways in sample-specific manner. Compared to gluten exposed healthy controls, pathways related to tight junction, olfactory transduction, metabolism of unsaturated fatty acids (such as arachidonic acid), metabolism of amino acids (such as cysteine and glutamate), and microbial infection were constitutively altered in CD patients regardless of treatment, while GFD treatment appears to mostly normalize immune response pathways to "healthy" state. Upstream regulator prediction analysis using differentially expressed genes identified constitutively activated regulators relatively proximal to previously reported CD associated loci, particularly SMARCA4 on 19p13.2 and CSF2 on 5q31. We also found constitutively upregulated genes in CD that are in CD associated genetic loci such as MEF2BNB-MEF2B (BORCS8-MEF2B) on 19p13.11 and CSTB on 21q22.3. RNAseq revealed strong effects of short oral gluten challenge on whole PBMC fraction and constitutively altered pathways in CD PBMC suggesting important factors other than gluten in CD pathogenesis.
  • Khan, Daulat Haleem; Bashir, Sajid; Khan, Muhammad Imran; Figueiredo, Patricia; Santos, Hélder A.; Peltonen, Leena (2020)
    The aim of the present study was to prepare niosomal formulations for dual drug therapy of ceftriaxone sodium and poorly water-soluble rifampicin by the ecological probe sonication method. Pluronic L121 and Span 60 were used as surface active agents and the optimization of the composition was made with the aid of Design of Experiment (DoE) concept. Concentration levels of charge inducing agent, dicetylphosphate (DCP), and Pluronic L121 were studied as variables. Prepared niosomes with varying concentrations of DCP and Pluronic L121 resulted in small sized niosomes with sizes ranging from 165 nm to 893 nm. During the four weeks stability testing, the particle sizes of the empty niosomes were reduced, while the particle sizes of the drug loaded niosomes were increased very slightly. The optimized formulations resulted in stable niosomes with high drug entrapment efficiencies: entrapment efficiency was 99% for rifampicin and 96% for ceftriaxone. All the niosomal formulations showed faster in vitro drug release rates as compared to bulk drug formulations. In conclusion, ceftriaxone and rifampicin loaded niosomes prepared with Pluronic L121 and Span 60 resulted in stable, small sized niosomes with high drug entrapment efficiencies and improved drug release profiles.
  • Grönberg, Malin; Nilsson, Cecilia; Markholm, Ida; Hedenfalk, Ingrid; Blomqvist, Carl; Holmberg, Lars; Tiensuu Janson, Eva; Fjällskog, Marie-Louise (2018)
    Ghrelin and obestatin are two gastrointestinal peptides, derived from a common precursor. Expression of both peptides have been found in breast cancer tissue and ghrelin has been associated with breast cancer development. Ghrelin expression is associated with longer survival in women diagnosed with invasive and node negative breast cancer. The clinical implications of the peptide expression in male breast cancer are unclear. The aim of this study was to investigate the role and potential clinical value of ghrelin and obestatin in male breast cancer. A tissue microarray of invasive male breast cancer specimens from 197 patients was immunostained with antibodies versus the two peptides. The expression of the peptides was correlated to previously known prognostic factors in breast cancer and to the outcome. No strong correlations were found between ghrelin or obestatin expression and other known prognostic factors. Only ghrelin expression was statistically significantly correlated to breast cancer-specific survival (HR 0.39, 95% CI 0.18-0.83) in univariate analyses and in multivariate models, adjusted for tumor size and node status (HR 0.38, 95% CI 0.17-0.87). HR for obestatin was 0.38 (95% CI 0.11-1.24). Ghrelin is a potential prognostic factor for breast cancer death in male breast cancer. Patients with tumors expressing ghrelin have a 2.5-fold lower risk for breast cancer death than those lacking ghrelin expression. Drugs targeting ghrelin are currently being investigated in clinical studies treating metabolic or nutritional disorders. Ghrelin should be further evaluated in forthcoming studies as a prognostic marker with the aim to be included in decision algorithms.
  • Rahikkala, Antti; Fontana, Flavia; Bauleth-Ramos, Tomás; Rebelo Correia, Alexandra Maria; Kemell, Marianna; Seitsonen, Jani; Mäkilä, Ermei; Sarmento, Bruno; Salonen, Jarno; Ruokolainen, Janne; Hirvonen, Jouni; Santos, Hélder A. (2020)
    Erythrocyte-based drug delivery systems have been investigated for their biocompatibility, long circulation time, and capability to transport cargo all around the body, thus presenting enormous potential in medical applications. In this study, we investigated hybrid nanoparticles consisting of nano-sized autologous or allogeneic red blood cell (RBC) membranes encapsulating porous silicon nanoparticles (PSi NPs). These NPs were functionalized with a model cancer antigen TRP2, which was either expressed on the surface of the RBCs by a cell membrane-mimicking block copolymer polydimethylsiloxane-b-poly-2-methyl-2-oxazoline, or attached on the PSi NPs, thus hidden within the encapsulation. When in the presence of peripheral blood immune cells, these NPs resulted in apoptotic cell death of T cells, where the NPs having TRP2 within the encapsulation led to a stronger T cell deletion. The deletion of the T cells did not change the relative proportion of CD4+ and cytotoxic CD8+ T cells. Overall, this work shows the combination of nano-sized RBCs, PSi, and antigenic peptides may have use in the treatment of autoimmune diseases.
  • Tommola, Paivi; Unkila-Kallio, Leila; Paetau, Anders; Meri, Seppo; Kalso, Eija; Paavonen, Jorma (2016)
    BACKGROUND: Provoked vestibulodynia manifests as allodynia of the vulvar vestibular mucosa. The exact mechanisms that result in altered pain sensation are unknown. Recently, we demonstrated the presence of secondary lymphoid tissue, which is the vestibule-associated lymphoid tissue in the vestibular mucosa, and showed that this tissue becomes activated in provoked vestibulodynia. OBJECTIVE: The purpose of this study was to examine whether expression of intraepithelial nerve fibers and nerve growth factor are related to immune activation in provoked vestibulodynia. STUDY DESIGN: Vestibular mucosal specimens were obtained from 27 patients with severe provoked vestibulodynia that was treated by vestibulectomy and from 15 control subjects. We used antibodies against the protein gene product 9.5, the neuron specific neurofilament, and nerve growth factor for immunohistochemistry to detect intraepithelial nerve fibers and nerve growth factor expressing immune cells in the vestibular mucosa. For intraepithelial nerve fibers, we determined their linear density (fiber counts per millimeter of the outer epithelial surface, protein gene product 9.5) or presence (neuron specific neurofilament). Nerve growth factor was analyzed by counting the staining-positive immune cells. Antibodies against CD20 (B lymphocytes) and CD3 (T lymphocytes) were used to identify and locate mucosal areas with increased density of lymphocytes and the presence of germinal centers (ie, signs of immune activation). B-cell activation index was used to describe the overall intensity of B-cell infiltration. RESULTS: We found more protein gene product 9.5-positive intraepithelial fibers in vestibulodynia than in the control samples (6.3/mm [range, 0.0-15.8] vs 2.0/mm [range, 0.0-12.0]; P = .006). Neuron specific neurofilament -positive intraepithelial fibers were found in 17 of 27 vestibulodynia cases (63.0%) and in none of the control cases. Protein gene product 9.5-positive intraepithelial fibers were more common in samples with more pronounced immune activation. The density of these fibers was higher in samples with than without germinal centers (6.1/mm [range, 4.3-15.8] vs 3.0/mm [range, 0.0-13.4]; P = .020). A positive correlation between the fiber density and B-cell activation index score of the sample was found (Spearman's Rho, 0.400; P = .004; R-2 = 0.128). No significant difference, however, was found in the density or presence of nerve fibers between samples with high and low T-cell densities. We identified areas of minor and major vestibular glands in 16 of the patient samples and in 1 control sample. Protein gene product 9.5-positive nerve fibers were found more often in glandular epithelium surrounded by B-cell infiltration than in glands without B cells (P = .013). Also, the presence of neuron specific neurofilament-positive fibers in glandular epithelium was associated with B-cell infiltrates (P = .053). Nerve growth factor-positive immune cells were more common in mucosal areas with than without B-cell infiltration and intraepithelial nerve fibers. CONCLUSION: Excessive epithelial nerve growth in provoked vestibulodynia is associated with increased B-cell infiltration and the presence of germinal centers. This supports the fundamental role of immune activation in provoked vestibulodynia.
  • Ahola, Hanna Gabriela; Sontag-Strohm, Tuula; Schulman, Alan; Tanhuanpää, Pirjo; Viitala, Sirja; Huang, Xin (2020)
    Oats have been found to be tolerated by most celiac disease patients, and oats are generally considered a good and safe addition to the gluten-free diet. There have been claims that some individual oat cultivars are harmful or immunogenic for celiac disease patients. In this study, we investigated 26 oat cultivars and landraces from the current breeding market and literature. Their total protein content ranged from 15.3% to 23.1% of which avenins ranged from 6.8% to 10.9%. Immunological activities of avenins were evaluated using mmunochemical analyses using monoclonal antibodies (mAb) R5 and G12. No immunological activity of the oat cultivars was observed by mAb R5 either in immunoblotting or enzyme-linked immunosorbent assay (ELISA). mAB G12 showed no activity in immunoblotting, but gave responses between 13 and 53 mg/kg in ELISA for total avenin extract. To understand the varying G12 activity, avenins were further fractionated. One avenin fraction showed a higher G12 response than the other fractions. Protein sequence comparison suggests that there is no direct binding to avenin-specific T-cell epitopes but the differences in repetitive regions in avenins may contribute to varying results in G12 ELISA.
  • Karhu, Lasse; Turku, Ainoleena; Xhaard, Henri (2015)
    Background: Interactions between the orexin peptides and their cognate OX1 and OX2 receptors remain poorly characterized. Site-directed mutagenesis studies on orexin peptides and receptors have indicated amino acids important for ligand binding and receptor activation. However, a better understanding of specific pairwise interactions would benefit small molecule discovery. Results: We constructed a set of three-dimensional models of the orexin 1 receptor based on the 3D-structures of the orexin 2 receptor (released while this manuscript was under review), neurotensin receptor 1 and chemokine receptor CXCR4, conducted an exhaustive docking of orexin-A(16-33) peptide fragment with ZDOCK and RDOCK, and analyzed a total of 4301 complexes through multidimensional scaling and clustering. The best docking poses reveal two alternative binding modes, where the C-terminus of the peptide lies deep in the binding pocket, on average about 5-6 angstrom above Tyr(6.48) and close to Gln(3.32). The binding modes differ in the about 100 degrees rotation of the peptide; the peptide His26 faces either the receptor's fifth transmembrane helix or the seventh helix. Both binding modes are well in line with previous mutation studies and partake in hydrogen bonding similar to suvorexant. Conclusions: We present two binding modes for orexin-A into orexin 1 receptor, which help rationalize previous results from site-directed mutagenesis studies. The binding modes should serve small molecule discovery, and offer insights into the mechanism of receptor activation.
  • Huang, Xin; Sontag-Strohm, Tuula; Stoddard, Frederick L.; Kato, Yoji (2017)
    Elimination of celiac-toxic prolamin peptides and proteins is essential for Triticeae products to be gluten-free. Instead of enzymatic hydrolysis, in this study we investigated metal-catalyzed oxidation of two model peptides, QQPFP, and PQPQLPY, together with a hordein isolate from barley (Hordeum vulgare L.). We established a multiple reaction monitoring (MRM) LC-MS method to detect and quantify proline oxidation fragments. In addition to fragmentation, aggregation and side chain modifications were identified, including free thiol loss, carbonyl formation, and dityrosine formation. The immunoreactivity of the oxidized hordein isolate was considerably decreased in all metal-catalyzed oxidation systems. Cleavage of peptides or protein fragments at the numerous proline residues partially accounts for the decrease. Metal-catalyzed oxidation can thus be used in the modification and elimination of celiac-toxic peptides and proteins. (C) 2016 Elsevier Ltd. All rights reserved.
  • Owen, Michael C.; Kulig, Waldemar; Poojari, Chetan; Rog, Tomasz; Strodel, Birgit (2018)
    To resolve the contribution of ceramide-containing lipids to the aggregation of the amyloid-β protein into β-sheet rich toxic oligomers, we employed molecular dynamics simulations to study the effect of cholesterol-containing bilayers comprised of POPC (70% POPC, and 30% cholesterol) and physiologically relevant concentrations of sphingomyelin (SM) (30% SM, 40% POPC, and 30% cholesterol), and the GM1 ganglioside (5% GM1, 70% POPC, and 25% cholesterol). The increased bilayer rigidity provided by SM (and to a lesser degree, GM1) reduced the interactions between the SM-enriched bilayer and the N-terminus of Aβ42 (and also residues Ser26, Asn27, and Lys28), which facilitated the formation of a β-sheet in the normally disordered N-terminal region. Aβ42 remained anchored to the SM-enriched bilayer through hydrogen bonds with the side chain of Arg5. With β-sheets in the at the N and C termini, the structure of Aβ42 in the sphingomyelin-enriched bilayer most resembles β-sheet-rich structures found in higher-ordered Aβ fibrils. Conversely, when bound to a bilayer comprised of 5% GM1, the conformation remained similar to that observed in the absence of GM1, with Aβ42 only making contact with one or two GM1 molecules. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
  • Sarajärvi, T.; Jäntti, M.; Paldanius, K. M. A.; Natunen, T.; Wu, J. C.; Mäkinen, P.; Tarvainen, I.; Tuominen, R. K.; Talman, V.; Hiltunen, M. (2018)
    Abnormal protein kinase C (PKC) function contributes to many pathophysiological processes relevant for Alzheimer's disease (AD), such as amyloid precursor protein (APP) processing. Phorbol esters and other PKC activators have been demonstrated to enhance the secretion of soluble APP alpha (sAPP alpha), reduce the levels of beta-amyloid (A beta), induce synaptogenesis, and promote neuroprotection. We have previously described isophthalate derivatives as a structurally simple family of PKC activators. Here, we characterised the effects of isophthalate derivatives HMI-1a3 and HMI-1b11 on neuronal viability, neuroinflammatory response, processing of APP and dendritic spine density and morphology in in vitro. HMI-1a3 increased the viability of embryonic primary cortical neurons and decreased the production of the pro-inflammatory mediator TNF alpha, but not that of nitric oxide, in mouse neuron-BV2 microglia co-cultures upon LPS- and IFN-gamma-induced neuroinflammation. Furthermore, both HMI-1a3 and HMI-1b11 increased the levels of sAPPa relative to total sAPP and the ratio of A beta 42/A beta 40 in human SH-Sv5v neuroblastoma cells. Finally, bryostatin-1, but not HMI-1a3, increased the number of mushroom spines in proportion to total spine density in mature mouse hippocampal neuron cultures. These results suggest that the PKC activator HMI-1a3 exerts neuroprotective functions in the in vitro models relevant for AD by reducing the production of TNF alpha and increasing the secretion of neuroprotective sAPPa.
  • Lauren, Patrick; Lou, Yan-Ru; Raki, Mari; Urtti, Arto; Bergström, Kim; Yliperttula, Marjo (2014)
  • Kavalakatt, Sina; Khadir, Abdelkrim; Madhu, Dhanya; Koistinen, Heikki A.; Al-Mulla, Fahd; Tuomilehto, Jaakko; Abubaker, Jehad; Tiss, Ali (2021)
    The neuropeptide urocortin 3 (UCN3) has a beneficial effect on metabolic disorders, such as obesity, diabetes, and cardiovascular disease. It has been reported that UCN3 regulates insulin secretion and is dysregulated with increasing severity of obesity and diabetes. However, its function in the adipose tissue is unclear. We investigated the overexpression of UCN3 in 3T3-L1 preadipocytes and differentiated adipocytes and its effects on heat shock response, ER stress, inflammatory markers, and glucose uptake in the presence of stress-inducing concentrations of palmitic acid (PA). UCN3 overexpression significantly downregulated heat shock proteins (HSP60, HSP72 and HSP90) and ER stress response markers (GRP78, PERK, ATF6, and IRE1 alpha) and attenuated inflammation (TNF alpha) and apoptosis (CHOP). Moreover, enhanced glucose uptake was observed in both preadipocytes and mature adipocytes, which is associated with upregulated phosphorylation of AKT and ERK but reduced p-JNK. Moderate effects of UCN3 overexpression were also observed in the presence of 400 mu M of PA, and macrophage conditioned medium dramatically decreased the UCN3 mRNA levels in differentiated 3T3-L1 cells. In conclusion, the beneficial effects of UCN3 in adipocytes are reflected, at least partially, by the improvement in cellular stress response and glucose uptake and attenuation of inflammation and apoptosis.
  • Savonius, Okko; Pelkonen, Tuula; Roine, Irmeli; Viljakainen, Heli; Andersson, Sture; Fernandez, Josefina; Peltola, Heikki; Helve, Otto (2018)
    Aim Vitamin D deficiency impairs the immunological system and has been associated with worse outcomes of infectious diseases, but its role in bacterial meningitis remains unknown. We investigated whether serum 25-hydroxyvitamin D concentrations related to disease outcomes and to cerebrospinal fluid (CSF) cathelicidin concentrations in childhood bacterial meningitis. Methods Results All consecutively enrolled patients in a clinical trial on childhood bacterial meningitis in Latin America in 1996-2003 were considered, and 142 children, with a median age of seven months who had a confirmed bacterial aetiology and frozen serum available for further analyses, were included in this study. Serum 25-hydroxyvitamin D concentrations were determined with a chemiluminescence immunoassay analyser, while CSF cathelicidin was measured by enzyme-linked immunosorbent assay. The median serum 25-hydroxyvitamin D concentration was 96 (range 19-251) nmol/L. No relationship was found with patient survival, but children with any neurological sequelae had lower serum 25-hydroxyvitamin D levels than children without sequelae. Serum 25-hydroxyvitamin D was unrelated to cathelicidin concentrations in CSF. Conclusion Although serum 25-hydroxyvitamin D in children with bacterial meningitis was not associated with survival or CSF cathelicidin concentrations, its relationship with more detailed disease outcomes warrants further study.
  • Mönkäre, Saana; Kuuluvainen, Liina; Kun-Rodrigues, Celia; Carmona, Susana; Schleutker, Johanna; Bras, Jose; Pöyhönen, Minna; Guerreiro, Rita; Myllykangas, Liisa (2021)
    Cerebral small vessel disease (CSVD) is the most important cause of vascular cognitive impairment (VCI). Most CSVD cases are sporadic but familial monogenic forms of the disorder have also been described. Despite the variants identified, many CSVD cases remain unexplained genetically. We used whole-exome sequencing in an attempt to identify novel gene variants underlying CSVD. A cohort of 35 Finnish patients with suspected CSVD was analyzed. Patients were screened negative for the most common variants affecting function in NOTCH3 in Finland (p.Arg133Cys and p.Arg182Cys). Whole-exome sequencing was performed to search for a genetic cause of CSVD. Our study resulted in the detection of possibly pathogenic variants or variants of unknown significance in genes known to associate with CSVD in six patients, accounting for 17% of cases. Those genes included NOTCH3, HTRA1, COL4A1, and COL4A2. We also identified variants with predicted pathogenic effect in genes associated with other neurological or stroke-related conditions in seven patients, accounting for 20% of cases. This study supports pathogenic roles of variants in COL4A1, COL4A2, and HTRA1 in CSVD and VCI. Our results also suggest that vascular pathogenic mechanisms are linked to neurodegenerative conditions and provide novel insights into the molecular basis of VCI.
  • Maleki, Reza; Khedri, Mohammad; Rezvantalab, Sima; Afsharchi, Fatemeh; Musaie, Kiyan; Shafiee, Sepehr; Shahbazi, Mohammad-Ali (2021)
    Cytotoxic aggregation of misfolded beta-amyloid (A beta) proteins is the main culprit suspected to be behind the development of Alzheimer's disease (AD). In this study, A beta interactions with the novel two-dimensional (2D) covalent organic frameworks (COFs) as therapeutic options for avoiding beta-amyloid aggregation have been investigated. The results from multi-scale atomistic simulations suggest that amine-functionalized COFs with a large surface area (more than 1000 m(2)/gr) have the potential to prevent A beta aggregation. Gibb's free energy analysis confirmed that COFs could prevent protofibril self-assembly in addition to inhibiting beta-amyloid aggregation. Additionally, it was observed that the amine functional group and high contact area could improve the inhibitory effect of COFs on A beta aggregation and enhance the diffusivity of COFs through the blood-brain barrier (BBB). In addition, microsecond coarse-grained (CG) simulations with three hundred amyloids reveal that the presence of COFs creates instability in the structure of amyloids and consequently prevents the fibrillation. These results suggest promising applications of engineered COFs in the treatment of AD and provide a new perspective on future experimental research.