Browsing by Subject "PERCH PERCA-FLUVIATILIS"

Sort by: Order: Results:

Now showing items 1-10 of 10
  • Rolls, Robert J.; Hayden, Brian; Kahilainen, Kimmo K. (2017)
    Climate change and species invasions represent key threats to global biodiversity. Subarctic freshwaters are sentinels for understanding both stressors because the effects of climate change are disproportionately strong at high latitudes and invasion of temperate species is prevalent. Here, we summarize the environmental effects of climate change and illustrate the ecological responses of freshwater fishes to these effects, spanning individual, population, community and ecosystem levels. Climate change is modifying hydrological cycles across atmospheric, terrestrial and aquatic components of subarctic ecosystems, causing increases in ambient water temperature and nutrient availability. These changes affect the individual behavior, habitat use, growth and metabolism, alter population spawning and recruitment dynamics, leading to changes in species abundance and distribution, modify food web structure, trophic interactions and energy flow within communities and change the sources, quantity and quality of energy and nutrients in ecosystems. Increases in temperature and its variability in aquatic environments underpin many ecological responses; however, altered hydrological regimes, increasing nutrient inputs and shortened ice cover are also important drivers of climate change effects and likely contribute to context-dependent responses. Species invasions are a complex aspect of the ecology of climate change because the phenomena of invasion are both an effect and a driver of the ecological consequences of climate change. Using subarctic freshwaters as an example, we illustrate how climate change can alter three distinct aspects of species invasions: (1) the vulnerability of ecosystems to be invaded, (2) the potential for species to spread and invade new habitats, and (3) the subsequent ecological effects of invaders. We identify three fundamental knowledge gaps focused on the need to determine (1) how environmental and landscape characteristics influence the ecological impact of climate change, (2) the separate and combined effects of climate and non-native invading species and (3) the underlying ecological processes or mechanisms responsible for changes in patterns of biodiversity.
  • Lehtinen, Sami O.; Geritz, Stefanus A.H. (2019)
    We investigate the evolution of timidity in a prey species whose predator has cannibalistic tendencies. The ecological model is derived from individual-level processes, in which the prey seeks refuge after detecting a predator, and the predator cannibalises on the conspecific juveniles. Bifurcation analysis of the model reveals ecological bistability between equilibrium and periodic attractors. Using the framework of adaptive dynamics, we classify ten qualitatively different evolutionary scenarios induced by the ecological bistability. These scenarios include ecological attractor switching through catastrophic bifurcations, which can reverse the direction of evolution. We show that such reversals often result in evolutionary cycling of the level of timidity. In the absence of cannibalism, the model never exhibits ecological bistability nor evolutionary cycling. We conclude that cannibalistic predator behaviour can completely change both the ecological dynamics and the evolution of prey. (C) 2019 The Authors. Published by Elsevier Ltd.
  • Ask, Jenny; Rowe, Owen; Brugel, Sonia; Stromgren, Marten; Bystrom, Par; Andersson, Agneta (2016)
    In this study, we measured depth-dependent benthic microalgal primary production in a Bothnian Bay estuary to estimate the benthic contribution to total primary production. In addition, we compiled data on benthic microalgal primary production in the entire Baltic Sea. In the estuary, the benthic habitat contributed 17 % to the total annual primary production, and when upscaling our data to the entire Bothnian Bay, the corresponding value was 31 %. This estimated benthic share (31 %) is three times higher compared to past estimates of 10 %. The main reason for this discrepancy is the lack of data regarding benthic primary production in the northern Baltic Sea, but also that past studies overestimated the importance of pelagic primary production by not correcting for system-specific bathymetric variation. Our study thus highlights the importance of benthic communities for the northern Baltic Sea ecosystem in general and for future management strategies and ecosystem studies in particular.
  • Taipale, S. J.; Vuorio, K.; Strandberg, U.; Kahilainen, K. K.; Jarvinen, M.; Hiltunen, M.; Peltomaa, E.; Kankaala, P. (2016)
    Fish are an important source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for birds, mammals and humans. In aquatic food webs, these highly unsaturated fatty acids (HUFA) are essential for many physiological processes and mainly synthetized by distinct phytoplankton taxa. Consumers at different trophic levels obtain essential fatty acids from their diet because they cannot produce these sufficiently de novo. Here, we evaluated how the increase in phosphorus concentration (eutrophication) or terrestrial organic matter inputs (brownification) change EPA and DHA content in the phytoplankton. Then, we evaluated whether these changes can be seen in the EPA and DHA content of piscivorous European perch (Perca fluviatilis), which is a widely distributed species and commonly consumed by humans. Data from 713 lakes showed statistically significant differences in the abundance of EPA- and DHA-synthesizing phytoplankton as well as in the concentrations and content of these essential fatty acids among oligo-mesotrophic, eutrophic and dystrophic lakes. The EPA and DHA content of phytoplankton biomass (mg HUFA g(-1)) was significantly lower in the eutrophic lakes than in the oligo-mesotrophic or dystrophic lakes. We found a strong significant correlation between the DHA content in the muscle of piscivorous perch and phytoplankton DHA content (r = 0.85) as well with the contribution of DHA-synthesizing phytoplankton taxa (r = 0.83). Among all DHA-synthesizing phytoplankton this correlation was the strongest with the dinoflagellates (r = 0.74) and chrysophytes (r = 0.70). Accordingly, the EPA + DHA content of perch muscle decreased with increasing total phosphorus (r(2) = 0.80) and dissolved organic carbon concentration (r(2) = 0.83) in the lakes. Our results suggest that although eutrophication generally increase biomass production across different trophic levels, the high proportion of low-quality primary producers reduce EPA and DHA content in the food web up to predatory fish. Ultimately, it seems that lake eutrophication and brownification decrease the nutritional quality of fish for human consumers. (C) 2016 The Authors. Published by Elsevier Ltd.
  • Helenius, Laura K.; Padros, Anna Ayma; Leskinen, Elina; Lehtonen, Hannu; Nurminen, Leena (2015)
    Planktivorous fish can exert strong top-down control on zooplankton communities. By incorporating different feeding strategies, from selective particulate feeding to cruising filter feeding, fish species target distinct prey. In this study, we investigated the effects of two species with different feeding strategies, the three-spined stickleback (Gasterosteus aculeatus (L.)) and roach (Rutilus rutilus (L.)), on a low-diversity brackish water zooplankton community using a 16-day mesocosm experiment. The experiment was conducted on a small-bodied spring zooplankton community in high-nutrient conditions, as well as a large-bodied summer community in low-nutrient conditions. Effects were highly dependent on the initial zooplankton community structure and hence seasonal variation. In a small-bodied community with high predation pressure and no dispersal or migration, the selective particulate-feeding stickleback depleted the zooplankton community and decreased its diversity more radically than the cruising filter-feeding roach. Cladocerans rather than copepods were efficiently removed by predation, and their removal caused altered patterns in rotifer abundance. In a large-bodied summer community with initial high taxonomic and functional diversity, predation pressure was lower and resource availability was high for omnivorous crustaceans preying on other zooplankton. In this community, predation maintained diversity, regardless of predator species. During both experimental periods, predation influenced the competitive relationship between the dominant calanoid copepods, and altered species composition and size structure of the zooplankton community. Changes also occurred to an extent at the level of nontarget prey, such as microzooplankton and rotifers, emphasizing the importance of subtle predation effects. We discuss our results in the context of the adaptive foraging mechanism and relate them to the natural littoral community.
  • Lehikoinen, Aleksi; Heikinheimo, Outi; Lehtonen, Hannu; Rusanen, Pekka (2017)
    Population increase of piscivorous cormorants in Europe and in North America has created a conflict between fisheries and the species. The impact of cormorants on natural fish populations and yields of fishermen is still under debate. We investigated potential connection of the great cormorant Phalacrocorax carbo abundance, fishing effort and water temperature with the economically important perch Perca fluviatilis and pikeperch Sander lucioperca yields, measured as catches per unit of effort (CPUE) in gillnet fishing along the Finnish coastal areas (Baltic Sea) using 50 km International Council for the Exploration of the Sea (ICES) grids. Since cormorants generally take smaller prey than fishermen, we expected 2-5 years time lag effect of the cormorant numbers on CPUE. Correspondingly, we expected 4-7 years lag effect of temperature on CPUE. Despite the population increase of cormorants, CPUE of perch increased in 10 out of 29 ICES grids during the study period 2005-2014. Pikeperch CPUE increased in five out of 24 grids and decreased in one. There was significant annual variation in CPUE values of perch and pikeperch, but values were not significantly associated with changes in cormorant numbers and temperature either annually or long-term. However, the CPUE values of pikeperch decreased towards the north, which is likely temperature driven as northern colder waters are less suitable for this species than southern waters. There was no clear evidence that either predation by cormorants or fishing effort are associated with long-term trends of perch and pikeperch stocks on a larger scale along the Finnish coast. The increasing CPUE values in several areas indicate that stocks are more abundant than ten years ago despite an increasing cormorant population. Our study approach can be used to monitor potential changes in stocks and impacts of cormorant in the future. (C) 2017 Elsevier B.V. All rights reserved.
  • Weigel, Benjamin; Bonsdorff, Erik (2018)
    Increasing environmental pressures and human impacts are reshaping community structures and species interactions throughout all trophic levels. The morphological and behavioural characteristics of species communities contain key ecological information on why prey species appear attractive to predators but are rarely applied when exploring predator-prey (PP) relationships. Expanding our knowledge on how changing prey communities can alter the food resource suitability (RS) for predators is vital for understanding PP dynamics in changing ecosystems. Detailed predator diet data are commonly restricted to commercially important species and often not available over long temporal scales. To find out whether structural changes of prey communities impact the food RS for predator communities over space and time, we apply a novel framework to describe and interpret changes in predator diet-suitability based on predation-relevant traits of prey. We use information on described feeding links from the literature to compile the prey spectrum for each predator and subsequently translate the prey-species into a prey-trait spectrum. For each predator, we then calculate a frequency-based prey-trait affinity score and relate it to the available food resource pool, the community weighted means of prey traits, resulting in a prey-suitability measure. We aim to reveal whether a described multi-decadal change in the community structure of zoobenthos had an impact on the food suitability for the benthic-feeding fish in a coastal system of the Baltic Sea. We assess the direction of change in resource quality from the perspective of benthic-feeding fish and describe predator-specific responses to examine which species are likely to profit or be disadvantaged by changes in their prey spectrum. Furthermore, we test the relationship between functional diversity of prey communities and food suitability for predators, and whether predation linkage-structures are affected through prey community-changes. Our results show that changes in zoobenthic communities had a positive effect on the food suitability for most benthic-feeding fish, implying more suitable food resources. Species-specific responses of predators suggest varying plasticity to cope with prey assemblages of different trait compositions. Additionally, the functional diversity of zoobenthos had a positive effect on the food suitability for predator fish. The changing trait compositions of prey influenced the PP linkage-structure, indicating varying specialisation of benthic feeding fish towards available food resources. Our findings suggest that changing morphological characteristics of prey can impact food RS features for its predators. This approach enables long-term evaluation of prey quality characteristics where no detailed diet data is available and allows for cross-system comparison as it is not relying on taxonomic identities per se.
  • Westerbom, Mats; Lappalainen, Antti; Mustonen, Olli; Norkko, Alf (2018)
    Climate change is predicted to cause a freshening of the Baltic Sea, facilitating range expansions of freshwater species and contractions of marine. Resident marine flounders (Platichthys flesus) and expansive freshwater roach (Rutilus rutilus) are dominant consumers in the Baltic Sea sublittoral where they occur in partial sympatry. By comparing patterns of resource use by flounders and roach along a declining resource gradient of blue mussels (Mytilus trossulus) our aim was to explore predator functional responses and the degree of trophic overlap. Understanding the nature of density-dependent prey acquisition has important implications for predicting population dynamics of both predators and their shared prey. Results showed a highly specialized diet for both species, high reliance on blue mussels throughout the range, similar prey size preference and high trophic overlap. Highest overlap occurred where blue mussels were abundant but overlap was also high where they were scarce. Our results highlight the importance of a single food item - the blue mussel - for both species, likely promoting high population size and range expansion of roach. Findings also suggest that range expansion of roach may have a top-down structuring force on mussels that differ in severity and location from that originating from resident flounders.
  • Karvonen, Anssi; Kristjansson, Bjarni K.; Skulason, Skuli; Lanki, Maiju; Rellstab, Christian; Jokela, Jukka (2013)