Browsing by Subject "PET"

Sort by: Order: Results:

Now showing items 1-19 of 19
  • Bebbington, Natalie A.; Haddock, Bryan T.; Bertilsson, Henrik; Hippeläinen, Eero; Husby, Ellen M.; Tunninen, Virpi I.; Söderberg, Marcus (2019)
    Background Computed tomography (CT) scans are routinely performed in positron emission tomography (PET) and single photon emission computed tomography (SPECT) examinations globally, yet few surveys have been conducted to gather national diagnostic reference level (NDRL) data for CT radiation doses in positron emission tomography/computed tomography (PET/CT) and single photon emission computed tomography/computed tomography (SPECT/CT). In this first Nordic-wide study of CT doses in hybrid imaging, Nordic NDRL CT doses are suggested for PET/CT and SPECT/CT examinations specific to the clinical purpose of CT, and the scope for optimisation is evaluated. Data on hybrid imaging CT exposures and clinical purpose of CT were gathered for 5 PET/CT and 8 SPECT/CT examinations via designed booklet. For each included dataset for a given facility and scanner type, the computed tomography dose index by volume (CTDIvol) and dose length product (DLP) was interpolated for a 75-kg person (referred to as CTDIvol,75kg and DLP75kg). Suggested NDRL (75th percentile) and achievable doses (50th percentile) were determined for CTDIvol,75kg and DLP75kg according to clinical purpose of CT. Differences in maximum and minimum doses (derived for a 75-kg patient) between facilities were also calculated for each examination and clinical purpose. Results Data were processed from 83 scanners from 43 facilities. Data were sufficient to suggest Nordic NDRL CT doses for the following: PET/CT oncology (localisation/characterisation, 15 systems); infection/inflammation (localisation/characterisation, 13 systems); brain (attenuation correction (AC) only, 11 systems); cardiac PET/CT and SPECT/CT (AC only, 30 systems); SPECT/CT lung (localisation/characterisation, 12 systems); bone (localisation/characterisation, 30 systems); and parathyroid (localisation/characterisation, 13 systems). Great variations in dose were seen for all aforementioned examinations. Greatest differences in DLP75kg for each examination, specific to clinical purpose, were as follows: SPECT/CT lung AC only (27.4); PET/CT and SPECT/CT cardiac AC only (19.6); infection/inflammation AC only (18.1); PET/CT brain localisation/characterisation (16.8); SPECT/CT bone localisation/characterisation (10.0); PET/CT oncology AC only (9.0); and SPECT/CT parathyroid localisation/characterisation (7.8). Conclusions Suggested Nordic NDRL CT doses are presented according to clinical purpose of CT for PET/CT oncology, infection/inflammation, brain, PET/CT and SPECT/CT cardiac, and SPECT/CT lung, bone, and parathyroid. The large variation in doses suggests great scope for optimisation in all 8 examinations.
  • Ni, Ruiqing; Gillberg, Per-Goran; Bogdanovic, Nenad; Viitanen, Matti; Myllykangas, Liisa; Nennesmo, Inger; Langstrom, Bengt; Nordberg, Agneta (2017)
    Introduction: Amyloid imaging has been integrated into diagnostic criteria for Alzheimer's disease (AD). How amyloid tracers binding differ for different tracer structures and amyloid-beta aggregates in autosomal dominant AD (ADAD) and sporadic AD is unclear. Methods: Binding properties of different amyloid tracers were examined in brain homogenates from six ADAD with APPswe, PS1 M146V, and PS1 E Delta 9 mutations, 13 sporadic AD, and 14 control cases. Results: H-3-PIB, H-3-florbetaben, H-3-AZD2184, and BTA-1 shared a high-and a varying low-affinity binding site in the frontal cortex of sporadic AD. AZD2184 detected another binding site (affinity 33 nM) in the frontal cortex of ADAD. The H-3-AZD2184 and H-3-PIB binding were significantly higher in the striatum of ADAD compared to sporadic AD and control. Polyphenol resveratrol showed strongest inhibition on H-3-AZD84 binding followed by H-3-florbetaben and minimal on H-3-PIB. Discussion: This study implies amyloid tracers of different structures detect different sites on amyloid-beta fibrils or conformations. (C) 2016 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
  • Puumi, Jukka (Helsingin yliopisto, 2021)
    An overview on utilization of dual nickel/photocatalyst protocols to conduct aryl-heteroatom cross-coupling reactions is presented. Basic concepts of photocatalysis, including different relaxation pathways, the difference of singlet and triplet states, and parameters used to predict reactivity are first disclosed. The general components used in dual nickel/photocatalyst protocols are presented followed by the discussion on reactivity trends. The reactivity trends are compared with other common aryl-heteroatom cross-coupling protocols (Buchwald-Hartwig-, Ullmann- and Chan-Lam couplings) illustrating the general advantages and disadvantages of each cross-coupling method. The scope of different dual nickel/photocatalyst protocols are then explored, concentrating on cross-coupling of amines, alcohols/thiols and carboxylic acids. The developments in mechanistic understanding on the dual nickel/photocatalyst aryl-heteroatom cross-couplings in recent years are reviewed. It is concluded that photocatalytic single electron transfer-based cycles, proposed for a number of coupling protocols, are very unlikely to take place. It is made clear that, based on the current knowledge, two principle mechanism are reasonable: energy transfer or thermal Ni(I)/Ni(III) cycles. Problems concerning energy transfer mechanisms are also discussed. Finally, applicability of dual nickel/photocatalyst aryl-heteroatom cross-coupling for industrially significant transformations is briefly discussed.
  • Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo (2015)
  • Ajalin, Riikka M.; Al-Abdulrasul, Haidar; Tuisku, Jouni M.; Hirvonen, Jussi E. S.; Vahlberg, Tero; Lahdenpohja, Salla; Rinne, Juha O.; Brück, Anna E. (2022)
    Background The endocannabinoid system is a widespread neuromodulatory system affecting several biological functions and processes. High densities of type 1 cannabinoid (CB1) receptors and endocannabinoids are found in basal ganglia, which makes them an interesting target group for drug development in basal ganglia disorders such as Parkinson's disease (PD). Objective The aim of this study was to investigate CB1 receptors in PD with [F-18]FMPEP-d(2) positron emission tomography (PET) and the effect of dopaminergic medication on the [F-18]FMPEP-d(2) binding. Methods The data consisted of 16 subjects with PD and 10 healthy control subjects (HCs). All participants underwent a [F-18]FMPEP-d(2) high-resolution research tomograph PET examination for the quantitative assessment of cerebral binding to CB1 receptors. To investigate the effect of dopaminergic medication on the [F-18]FMPEP-d(2) binding, 15 subjects with PD underwent [F-18]FMPEP-d(2) PET twice, both on and off antiparkinsonian medication. Results [F-18]FMPEP-d(2) distribution volume was significantly lower in the off scan compared with the on scan in basal ganglia, thalamus, hippocampus, and amygdala (P < 0.05). Distribution volume was lower in subjects with PD off than in HCs globally (P < 0.05), but not higher than in HCs in any brain region. Conclusions Subjects with PD have lower CB1 receptor availability compared with HCs. PD medication increases CB1 receptor toward normal levels. (c) 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
  • Martinmäki, Tatu (Helsingin yliopisto, 2020)
    Tiivistelmä – Referat – Abstract Molecular imaging is visualization, characterization and quantification of biological processes at molecular and cellular levels of living organisms, achieved by molecular imaging probes and techniques such as radiotracer imaging, magnetic resonance imaging and ultrasound imaging. Molecular imaging is an important part of patient care. It allows detection and localization of disease at early stages, and it is also an important tool in drug discovery and development. Positron emission tomography (PET) is a biomedical imaging technique considered as one of the most important advances in biomedical sciences. PET is used for a variety of biomedical applications: i.e. imaging of divergent metabolism, oncology and neurology. PET is based on incorporation of positron emitting radionuclides to drug molecules. As prominent radionuclides used in PET are of short or ultra-short half-lives, the radionuclide is most often incorporated to the precursor in the last step of the synthesis. This has proven to be a challenge with novel targeted radiotracers, as the demand for high specific activity leads to harsh reaction conditions, often with extreme pH and heat which could denature the targeting vector. Click chemistry is a synthetic approach based on modular building blocks. The concept was originally developed for purposes of drug discovery and development. It has been widely utilized in radiopharmaceutical development for conjugating prosthetic groups or functional groups to precursor molecules. Click chemistry reactions are highly selective and fast due to thermodynamic driving force and occur with high kinetics in mild reaction conditions, which makes the concept ideal for development and production of PET radiopharmaceuticals. Isotope exchange (IE) radiosynthesis with trifluoroborate moieties is an alternative labeling strategy for a reasonably high yield 18F labeling of targeted radiopharmaceuticals. As the labeling conditions in IE are milder than in commonly utilized nucleophilic fluorination, the scope of targeting vectors can be extended to labile biomolecules expressing highly specific binding to drug targets, resulting to higher contrast in PET imaging. A trifluoroborate functionalized prosthetic group 3 was synthetized utilizing click chemistry reactions, purified with SPE and characterized with HPLC-MS and NMR (1H , 11B-, 13C-, 19F-NMR). [18F]3 was successfully radiolabeled with RCY of 20.1 %, incorporation yield of 22.3 ± 11.4 % and RCP of >95 %. TCO-functionalized TOC-peptide precursor 6 was synthetized from a commercial octreotide precursor and a commercially available click chemistry building block via oxime bond formation. 6 was characterized with HPLC-MS and purified with semi preparative HPLC. Final product [18F]7 was produced in a two-step radiosynthesis via IEDDA conjugation of [18F]3 and 6. [18F]7 was produced with RCY 1.0 ± 1.0 %, RCP >95 % and estimated molar activity of 0.7 ± 0.8 GBq/µmol. A cell uptake study was conducted with [18F]7 in AR42J cell line. Internalization and specific binding to SSTR2 were observed in vitro.
  • Kurki, Satu (Helsingin yliopisto, 2021)
    Eturauhassyövän ja sen etäispesäkkeiden diagnostiikassa käytettävien radiolääkkeiden tärkeä kohdemolekyyli elimistössä on prostataspesifinen membraaniantigeeni (PSMA), jonka esiintyminen on eturauhassyövässä yliekspressoitunutta. Viimeisen kahden vuosikymmenen aikana on kehitetty lukuisia radioleimattuja PSMA-merkkiaineita, pääosin pienimolekylaarisia peptidomimeettejä, jotka inhiboivat PSMA:n toimintaa. Positroniemissiotomografiassa eli PET-kuvantamisessa käytettävistä fluori-18-leimautuista PSMA-inhibiittoreista merkittävimmät ovat [18F]DCFPyL ja [18F]F-PSMA-1007. Kyseisiä radiolääkkeitä kyetään tuottamaan teollisesti riittävän suurilla eräkohtaisilla aktiivisuuksilla ja synteesisaannoilla sekä hyödyntämään synteesissä suoria fluorinointireaktioita ja automatisoituja synteesiyksiköitä. Skaalattaessa tuotantoaktiivisuuksia tutkimusmittakaavasta teolliseen tuotantoon, haasteena on valmisteen radiolyysi eli hajoaminen joko suoraan säteilyn vaikutuksesta tai säteilyn muodostamien liuottimen radikaalien reagoidessa lääkeainemolekyylin kanssa. Radiolyysiä pyritään estämään lisäämällä formulaatioon radiolyysin estäjää tai vaikuttamalla radioaktiivisuustasoihin synteesiprosessin kriittisissä vaiheissa ja lopputuotteessa. Kokeellisessa osuudessa tutkittiin koesynteesien ja nestekromatografiamenetelmän avulla [18F]F-PSMA-1007-radiolääkkeen hajoamiseen vaikuttavia tekijöitä ja hajoamistuotteita tunnistettiin nestekromatografia-massaspektrometrisellä menetelmällä. Lisäksi vertailtiin kahden eri formulaatioliuoksen kykyä estää tuotteen radiolyysiä. Tutkimuksessa todettiin, että [18F]F-PSMA-1007:n hajoaminen tapahtuu suoraan beeta(+)-säteilyn ja radikaalireaktioiden kautta. Askorbaatti-ionit kykenevät tehokkaasti estämään tuotteen radiolyysiä. Radiolyysiä tapahtuu jo reaktioastiassa ja se kasvaa merkittävästi synteesin alkuaktiivisuuden noustessa yli 100 GBq. Hajoamistuotteita muodostuu lukuisia ja kokeellisessa osuudessa tunnistettiin muutama mahdollinen pilkkoutumiskohta tutkittavasta molekyylistä.
  • Sokka, Iris K.; Imlimthan, Surachet; Sarparanta, Mirkka; Maaheimo, Hannu; Johansson, Mikael P.; Ekholm, Filip S. (2021)
    Halogenation can be utilized for the purposes of labeling and molecular imaging, providing a means to, e.g., follow drug distribution in an organism through positron emission tomography (PET) or study the molecular recognition events unfolding by nuclear magnetic resonance (NMR) spectroscopy. For cancer therapeutics, where often highly toxic substances are employed, it is of importance to be able to track the distribution of the drugs and their metabolites in order to ensure minimal side effects. Labeling should ideally have a negligible disruptive effect on the efficacy of a given drug. Using a combination of NMR spectroscopy and cytotoxicity assays, we identify a site susceptible to halogenation in monomethyl auristatin F (MMAF), a widely used cytotoxic agent in the antibody-drug conjugate (ADC) family of cancer drugs, and study the effects of fluorination and chlorination on the physiological solution structure of the auristatins and their cytotoxicity. We find that the cytotoxicity of the parent drug is retained, while the conformational equilibrium is shifted significantly toward the biologically active trans isomer, simultaneously decreasing the concentration of the inactive and potentially disruptive cis isomer by up to 50%. Our results may serve as a base for the future assembly of a multifunctional toolkit for the assessment of linker technologies and exploring bystander effects from the warhead perspective in auristatin-derived ADCs.
  • Huhtala, Tuulia; Poutiainen, Pekka; Rytkönen, Jussi; Lehtimäki, Kimmo; Parkkari, Teija; Kasanen, Iiris; Airaksinen, Anu J.; Koivula, Teija; Sweeney, Patrick; Kontkanen, Outi; Wityak, John; Dominiquez, Celia; Park, Larry C (Springer International Publishing, 2019)
    Abstract Purpose Dopamine receptors are involved in pathophysiology of neuropsychiatric diseases, including Huntington’s disease (HD). PET imaging of dopamine D2 receptors (D2R) in HD patients has demonstrated 40% decrease in D2R binding in striatum, and D2R could be a reliable quantitative target to monitor disease progression. A D2/3R antagonist, [18F] fallypride, is a high-affinity radioligand that has been clinically used to study receptor density and occupancy in neuropsychiatric disorders. Here we report an improved synthesis method for [18F]fallypride. In addition, high molar activity of the ligand has allowed us to apply PET imaging to characterize D2/D3 receptor density in striatum of the recently developed zQ175DN knock-in (KI) mouse model of HD. Methods We longitudinally characterized in vivo [18F] fallypride -PET imaging of D2/D3 receptor densities in striatum of 9 and 12 month old wild type (WT) and heterozygous (HET) zQ175DN KI mouse. Furthermore, we verified the D2/D3 receptor density in striatum with [3H] fallypride autoradiography at 12 months of age. Results We implemented an improved synthesis method for [18F] fallypride to yield high molar activity (MA, 298–360 GBq/μmol) and good reproducibility. In the HET zQ175DN KI mice, we observed a significant longitudinal decrease in binding potential (BPND) (30.2%, p < 0.001, 9 months of age and 51.6%, p < 0.001, 12 months of age) compared to WT littermates. No mass effect was observed when the MA of [18F] fallypride was > 100 GBq/μmol at the time of injection. Furthermore, the decrease of D2/D3 receptor density in striatum in HET zQ175DN KI was consistent using [3H] fallypride autoradiography. Conclusions We observed a significant decrease in D2/D3R receptor densities in the striatum of HET zQ175DN KI mice compared to WT mice at 9 and 12 months of age. These results are in line with clinical findings in HD patients, suggesting [18F] fallypride PET imaging has potential as a quantitative translational approach to monitor disease progression in preclinical studies.
  • Mikkola, Kirsi; Yim, Cheng-Bin; Lehtiniemi, Paula; Kauhanen, Saila; Tarkia, Miikka; Tolvanen, Tuula; Nuutila, Pirjo; Solin, Olof (2016)
    Background: Several radiometal-labeled, exendin-based tracers that target glucagon-like peptide-1 receptors (GLP-1R) have been intensively explored for beta cell imaging. The main obstacle has been the high uptake of tracer in the kidneys. This study aimed to develop a novel GLP1-R-specific tracer, with fluorine-18 attached to exendin-4, to label beta cells for clinical imaging with PET (positron emission tomography). We hypothesized that this tracer would undergo reduced kidney uptake. F-18-labeled [Nle(14), Lys(40)] exendin-4 analog ([F-18] exendin-4) was produced via Cu-catalyzed click chemistry. The biodistribution of [F-18] exendin-4 was assessed with ex vivo organ.-counting and in vivo PET imaging. We also tested the in vivo stability of the radiotracer. The localization of F-18 radioactivity in rat and human pancreatic tissue sections was investigated with autoradiography. Receptor specificity was assessed with unlabeled exendin-3. Islet labeling was confirmed with immunohistochemistry. The doses of radiation in humans were estimated based on biodistribution results in rats. Results: [F-18] exendin-4 was synthesized with high yield and high specific activity. Results showed specific, sustained [F-18] exendin-4 uptake in pancreatic islets. In contrast to previous studies that tested radiometal-labeled exendin-based tracers, we observed rapid renal clearance of [F-18] exendin-4. Conclusions: [F-18] exendin-4 showed promise as a tracer for clinical imaging of pancreatic beta cells, due to its high specific uptake in native beta cells and its concomitant low kidney radioactivity uptake.
  • Tuominen, Lauri; Miettunen, Jouko; Cannon, Dara M.; Drevets, Wayne C.; Frokjaer, Vibe G.; Hirvonen, Jussi; Ichise, Masanori; Jensen, Peter S.; Keltikangas-Järvinen, Liisa; Klaver, Jacqueline M.; Knudsen, Gitte M.; Takano, Akihiro; Suhara, Tetsuya; Hietala, Jarmo (2017)
    Background: Neuroticism is a major risk factor for affective disorders. This personality trait has been hypothesized to associate with synaptic availability of the serotonin transporter, which critically controls serotonergic tone in the brain. However, earlier studies linking neuroticism and serotonin transporter have failed to produce converging findings. Because sex affects both the serotonergic system and the risk that neuroticism poses to the individual, sex may modify the association between neuroticism and serotonin transporter, but this question has not been investigated by previous studies. Methods: Here, we combined data from 4 different positron emission tomography imaging centers to address whether neuroticism is related to serotonin transporter binding in vivo. The data set included serotonin transporter binding potential values from the thalamus and striatum and personality scores from 91 healthy males and 56 healthy females. We specifically tested if the association between neuroticism and serotonin transporter is different in females and males. Results: We found that neuroticism and thalamic serotonin transporter binding potentials were associated in both males and females, but with opposite directionality. Higher neuroticism associated with higher serotonin transporter binding potential in males (standardized beta 0.292, P = .008), whereas in females, higher neuroticism associated with lower serotonin transporter binding potential (standardized beta -0.288, P = .014). Conclusions: The finding is in agreement with recent studies showing that the serotonergic system is involved in affective disorders differently in males and females and suggests that contribution of thalamic serotonin transporter to the risk of affective disorders depends on sex.
  • Brander, Tommi; Ilmavirta, Joonas; Piiroinen, Petteri; Tyni, Teemu (2020)
    We study an inverse problem where an unknown radiating source is observed with collimated detectors along a single line and the medium has a known attenuation. The research is motivated by applications in SPECT and beam hardening. If measurements are carried out with frequencies ranging in an open set, we show that the source density is uniquely determined by these measurements up to averaging over levelsets of the integrated attenuation. This leads to a generalized Laplace transform. We also discuss some numerical approaches and demonstrate the results with several examples.
  • Konki, Mikko; Malonzo, Maia; Karlsson, Ida K.; Lindgren, Noora; Ghimire, Bishwa; Smolander, Johannes; Scheinin, Noora M.; Ollikainen, Miina; Laiho, Asta; Elo, Laura L.; Lonnberg, Tapio; Roytta, Matias; Pedersen, Nancy L.; Kaprio, Jaakko; Lahdesmaki, Harri; Rinne, Juha O.; Lund, Riikka J. (2019)
    Background Alzheimer's disease results from a neurodegenerative process that starts well before the diagnosis can be made. New prognostic or diagnostic markers enabling early intervention into the disease process would be highly valuable. Environmental and lifestyle factors largely modulate the disease risk and may influence the pathogenesis through epigenetic mechanisms, such as DNA methylation. As environmental and lifestyle factors may affect multiple tissues of the body, we hypothesized that the disease-associated DNA methylation signatures are detectable in the peripheral blood of discordant twin pairs. Results Comparison of 23 disease discordant Finnish twin pairs with reduced representation bisulfite sequencing revealed peripheral blood DNA methylation differences in 11 genomic regions with at least 15.0% median methylation difference and FDR adjusted p value
  • Lampuoti, Jarkko (Helsingin yliopisto, 2021)
    Scandium-44 is a medically interesting positron and gamma emitting radionuclide with possible applications in molecular imaging. It is commonly produced with the use of a cyclotron in a calcium or sometimes a titanium based irradiation target. As the radiopharmaceutical use of scandium radionuclides commonly requires chelation, scandium needs to be separated from the target matrix. This is most often carried out either via extraction chromatography using a suitable solid phase or through precipitation-filtration. In this work, scandium-44 along with other scandium radionuclides was produced using cyclotron irradiation with 10 MeV protons and a solid, natural isotopic abundance calcium carbonate or calcium metal target. Scandium was separated from the irradiated targets using four different chromatographic materials and a precipitation method. Scandium-44 was produced in kilo- and megabecquerel amounts with an average saturation yield of 47 MBq/μA. The achieved separation yields in a single elution ranged from 28 ± 11 % to 70 ± 20 % with the best performing extraction material being UTEVA resin.
  • Das, Sudeep; Imlimthan, Surachet; Airaksinen, Anu; Sarparanta, Mirkka (Springer Nature Switzerland AG, 2021)
    Advances in Experimental Medicine and Biology
    In the recent years, progress in nanotechnology has significantly contributed to the development of novel pharmaceutical formulations to overcome the drawbacks of conventional treatments and improve the therapeutic outcome in many diseases, especially cancer. Nanoparticle vectors have demonstrated the potential to concomitantly deliver diagnostic and therapeutic payloads to diseased tissue. Due to their special physical and chemical properties, the characteristics and function of nanoparticles are tunable based on biological molecular targets and specific desired features (e.g., surface chemistry and diagnostic radioisotope labeling). Within the past decade, several theranostic nanoparticles have been developed as a multifunctional nanosystems which combine the diagnostic and therapeutic functionalities into a single drug delivery platform. Theranostic nanosystems can provide useful information on a real-time systemic distribution of the developed nanosystem and simultaneously transport the therapeutic payload. In general, the diagnostic functionality of theranostic nanoparticles can be achieved through labeling gamma-emitted radioactive isotopes on the surface of nanoparticles which facilitates noninvasive detection using nuclear molecular imaging techniques, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT), meanwhile, the therapeutic effect arises from the potent drug released from the nanoparticle. Moreover, some radioisotopes can concurrently emit both gamma radiation and high-energy particles (e.g., alpha, beta, and Auger electrons), prompting the use either alone for radiotheranostics or synergistically with chemotherapy. This chapter provides an overview of the fundamentals of radiochemistry and relevant radiolabeling strategies for theranostic nanosystem development as well as the methods for the preclinical evaluation of radiolabeled nanoparticles. Furthermore, preclinical case studies of recently developed theranostic nanosystems will be highlighted.
  • Päivärinta, Johanna; Oikonen, Vesa; Räisänen-Sokolowski, Anne; Tolvanen, Tuula; Löyttyniemi, Eliisa; Hidehiro, Iida; Nuutila, Pirjo; Metsärinne, Kaj; Koivuviita, Niina (2019)
    Background Despite improvement in short-term outcome of kidney transplants, the long-term survival of kidney transplants has not changed over past decades. Kidney biopsy is the gold standard of transplant pathology but it's invasive. Quantification of transplant blood flow could provide a novel non-invasive method to evaluate transplant pathology. The aim of this retrospective cross-sectional pilot study was to evaluate positron emission tomography (PET) as a method to measure kidney transplant perfusion and find out if there is correlation between transplant perfusion and histopathology. Methods Renal cortical perfusion of 19 kidney transplantation patients [average time from transplantation 33 (17-54) months; eGFR 55 (47-69) ml/min] and 10 healthy controls were studied by [(15) O]H2O PET. Perfusion and Doppler resistance index (RI) of transplants were compared with histology of one-year protocol transplant biopsy. Results Renal cortical perfusion of healthy control subjects and transplant patients were 2.7 (2.4-4.0) ml min(- 1) g(- 1) and 2.2 (2.0-3.0) ml min(- 1) g(- 1), respectively (p = 0.1). Renal vascular resistance (RVR) of the patients was 47.0 (36.7-51.4) mmHg mL(- 1)min(- 1)g(- 1) and that of the healthy 32.4 (24.6-39.6) mmHg mL(- 1)min(-1)g(-1) (p = 0.01). There was a statistically significant correlation between Doppler RI and perfusion of transplants (r = - 0.51, p = 0.026). Transplant Doppler RI of the group of mild fibrotic changes [0.73 (0.70-0.76)] and the group of no fibrotic changes [0.66 (0.61-0.72)] differed statistically significantly (p = 0.03). No statistically significant correlation was found between cortical perfusion and fibrosis of transplants (p = 0.56). Conclusions [(15) O]H2O PET showed its capability as a method in measuring perfusion of kidney transplants. RVR of transplant patients with stage 2-3 chronic kidney disease was higher than that of the healthy, although kidney perfusion values didn't differ between the groups. Doppler based RI correlated with perfusion and fibrosis of transplants.
  • Sun, Lihua; Tang, Jing; Liljenbäck, Heidi; Honkaniemi, Aake; Virta, Jenni; Isojärvi, Janne; Karjalainen, Tomi; Kantonen, Tatu; Nuutila, Pirjo; Hietala, Jarmo; Kaasinen, Valtteri; Kalliokoski, Kari; Hirvonen, Jussi; Scheinin, Harry; Helin, Semi; Eerola, Kim; Savontaus, Eriika; Yatkin, Emrah; Rinne, Juha O.; Roivainen, Anne; Nummenmaa, Lauri (2021)
    Seasonal rhythms influence emotion and sociability. The brain μ-opioid receptor (MOR) system modulates a multitude of seasonally varying socioemotional functions, but its seasonal variation remains elusive with no previously reported in vivo evidence. Here, we first conducted a cross-sectional study with previously acquired human [11C]carfentanil PET imaging data (132 male and 72 female healthy subjects) to test whether there was seasonal difference in MOR availability. We then investigated experimentally whether seasonal variation in daylength causally influences brain MOR availability in rats. Rats (six male and three female rats) underwent daylength cycle simulating seasonal changes; control animals (two male and one female rats) were kept under constant daylength. Animals were scanned repeatedly with [11C]carfentanil PET imaging. Seasonally varying daylength had an inverted U-shaped functional relationship with brain MOR availability in humans. Brain regions sensitive to daylength spanned the socio-emotional brain circuits, where MOR availability formed a spring-like peak. In rats, MOR availabilities in the brain neocortex, thalamus and striatum peaked at intermediate daylength. Varying daylength also affected the weight gain and stress hormone. We conclude that the in vivo brain MOR availability in humans and rats shows significant seasonal variation, which is predominately associated with seasonal photoperiodic variation. Given the intimate links between MOR signaling and socioemotional behavior, these results suggest that the MOR system might underlie seasonal variation in human mood and social behavior.SIGNIFICANCE STATEMENTSeasonal rhythms influence emotion and sociability. The brain’s μ-opioid receptor (MOR) system modulates numerous seasonally varying socioemotional functions, but its seasonal variation remains elusive. Here we used positron emission tomography to show that MOR levels in both human and rat brains show daylength-dependent seasonal variation. The highest MOR availability was observed at intermediate daylengths. Given the intimate links between MOR signaling and socioemotional behavior, these results suggest that the MOR system might underlie seasonal variation in human mood and social behavior.
  • Haslinger, Simone; Hietala, Sami; Hummel, Michael; Maunu, Sirkka Liisa; Sixta, Herbert (2019)
    The valorization of cellulose rich textile waste is promoted by the development of a novel solid-state NMR method for the quantification of cellulose and polyester in textile blends. We applied C-13 CP-MAS NMR as a tool for the quantification and structural characterization of cellulose in cotton polyester blends. Gaussian functions were used to integrate the spectra obtained from a set of calibration standards in order to calculate a sigmoidal calibration curve. Acid hydrolysis was chosen as a reference method. The results demonstrated that solid-state NMR enables a reliable determination of cellulose and polyester in both preconsumer and postconsumer waste textiles and suggests a possible extension of the concept to blends of man-made cellulose fibers (MMCFs) and polyester.
  • Sokolowska, Ewa; Viitanen, Riikka; Misiewicz, Zuzanna; Mennesson, Marie; Saarnio, Suvi; Kulesskaya, Natalia; Kängsep, Sanna; Liljenback, Heidi; Marjamäki, Paivi; Autio, Anu; Callan, Saija-Anita; Nuutila, Pirjo; Roivainen, Anne; Partonen, Timo; Hovatta, Iiris (2021)
    Cryptochrome 2 (Cry2) is a core clock gene important for circadian regulation. It has also been associated with anxiety and depressive-like behaviors in mice, but the previous findings have been conflicting in terms of the direction of the effect. To begin to elucidate the molecular mechanisms of this association, we carried out behavioral testing, PET imaging, and gene expression analysis of Cry2(-/-) and Cry2(+/+) mice. Compared to Cry2(+/+) mice, we found that Cry2(-/-) mice spent less time immobile in the forced swim test, suggesting reduced despair-like behavior. Moreover, Cry2(-/-) mice had lower saccharin preference, indicative of increased anhedonia. In contrast, we observed no group differences in anxiety-like behavior. The behavioral changes were accompanied by lower metabolic activity of the ventro-medial hypothalamus, suprachiasmatic nuclei, ventral tegmental area, anterior and medial striatum, substantia nigra, and habenula after cold stress as measured by PET imaging with a glucose analog. Although the expression of many depression-associated and metabolic genes was upregulated or downregulated by cold stress, we observed no differences between Cry2(-/-) and Cry2(+/+) mice. These findings are consistent with other studies showing that Cry2 is required for normal emotional behavior. Our findings confirm previous roles of Cry2 in behavior and extend them by showing that the effects on behavior may be mediated by changes in brain metabolism.