Browsing by Subject "PHASE-BEHAVIOR"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Knaapila, M.; Stepanyan, R.; Torkkeli, M.; Haase, D.; Frohlich, N.; Helfer, A.; Forster, M.; Scherf, U. (2016)
    We study relations among the side-chain asymmetry, structure, and order-disorder transition (ODT) in hairy-rod-type poly(9,9-dihexylfluorene) (PF6) with two identical side chains and atactic poly(9-octyl-9-methylfluorene) (PF1-8) with two different side chains per repeat. PF6 and PF1-8 organize into alternating side-chain and backbone layers that transform into an isotropic phase at T-ODT(PF6) and T-bi(ODT)(PF1-8). We interpret polymers in terms of monodisperse and bidisperse brushes and predict scenarios T-ODT <T-bi(ODT) and T-ODT similar to T-bi(ODT) for high and low grafting densities (the side-chain length above or below the average grafting distance). Calorimetry and x-ray scattering indicate the condition T-ODT(PF6) similar to T-bi(ODT)(PF1-8) following the low grafting prediction. PF6 side chains coming from the alternating backbone layers appear as two separate layers with thickness H(PF6), whereas PF1-8 side chains appear as an indistinguishable bilayer with a half thickness H-bilayer(PF1-8)/2 approximate to H(PF6). The low grafting density region is structurally possible but not certain for PF6 and confirmed for PF1-8.
  • Bogdan, Anatoli; Molina, Mario J.; Tenhu, Heikki; Loerting, Thomas (2015)
    Calorimetric and optical cryo-microscope measurements of 10-64 wt % citric acid (CA) solutions subjected to moderate (3 K/min) and slow (0.5 and 0.1 K/min) cooling/warming rates and also to quenching/moderate warming between 320 and 133 K are presented. Depending on solution concentration and cooling rate, the obtained thermograms show one freezing event and from one to three liquid-glass transitions upon cooling and from one to six liquid-glass and reverse glass-liquid transitions, one or two freezing events, and one melting event upon warming of frozen/glassy CA/H2O. The multiple freezing events and glass transitions pertain to the mother CA/H2O solution itself and two freeze-concentrated solution regions, FCS1 and FCS2, of different concentrations. The FCS1 and FCS2 (or FCS22) are formed during the freezing of CA/H2O upon cooling and/or during the freezing upon warming of partly glassy or entirely glassy mother CA/H2O. The formation of two FCS1 and FCS22 regions during the freezing upon warming to our best knowledge has never been reported before. Using an optical cryo-microscope, we are able to observe the formation of a continuous ice framework (IF) and its morphology and reciprocal distribution of IF/(FCS1 + FCS2). Our results provide a new look at the freezing and glass transition behavior of aqueous solutions and can be used for the optimization of lyophilization and freezing of foods and biopharmaceutical formulations, among many other applications where freezing plays a crucial role.
  • Javanainen, Matti; Martinez-Seara, Hector; Vattulainen, Ilpo (2017)
    Biological membranes generate specific functions through compartmentalized regions such as cholesterol-enriched membrane nanodomains that host selected proteins. Despite the biological significance of nanodomains, details on their structure remain elusive. They cannot be observed via microscopic experimental techniques due to their small size, yet there is also a lack of atomistic simulation models able to describe spontaneous nanodomain formation in sufficiently simple but biologically relevant complex membranes. Here we use atomistic simulations to consider a binary mixture of saturated dipalmitoylphosphatidylcholine and cholesterol - the "minimal standard" for nanodomain formation. The simulations reveal how cholesterol drives the formation of fluid cholesterol-rich nanodomains hosting hexagonally packed cholesterol-poor lipid nanoclusters, both of which show registration between the membrane leaflets. The complex nanodomain substructure forms when cholesterol positions itself in the domain boundary region. Here cholesterol can also readily flip-flop across the membrane. Most importantly, replacing cholesterol with a sterol characterized by a less asymmetric ring region impairs the emergence of nanodomains. The model considered explains a plethora of controversial experimental results and provides an excellent basis for further computational studies on nanodomains. Furthermore, the results highlight the role of cholesterol as a key player in the modulation of nanodomains for membrane protein function.