Browsing by Subject "PHENOTYPIC PLASTICITY"

Sort by: Order: Results:

Now showing items 1-20 of 30
  • Peris Tamayo, Ana-Maria; Devineau, Olivier; Praebel, Kim; Kahilainen, Kimmo K.; ostbye, Kjartan (2020)
    Adaptive radiation is the diversification of species to different ecological niches and has repeatedly occurred in different salmonid fish of postglacial lakes. In Lake Tinnsjoen, one of the largest and deepest lakes in Norway, the salmonid fish, Arctic charr (Salvelinus alpinus(L.)), has likely radiated within 9,700 years after deglaciation into ecologically and genetically segregated Piscivore, Planktivore, Dwarf, and Abyssal morphs in the pelagial, littoral, shallow-moderate profundal, and deep-profundal habitats. We compared trait variation in the size of the head, the eye and olfactory organs, as well as the volumes of five brain regions of these four Arctic charr morphs. We hypothesised that specific habitat characteristics have promoted divergent body, head, and brain sizes related to utilized depth differing in environmental constraints (e.g., light, oxygen, pressure, temperature, and food quality). The most important ecomorphological variables differentiating morphs were eye area, habitat, and number of lamellae. The Abyssal morph living in the deepest areas of the lake had the smallest brain region volumes, head, and eye size. Comparing the olfactory bulb with the optic tectum in size, it was larger in the Abyssal morph than in the Piscivore morph. The Piscivore and Planktivore morphs that use more illuminated habitats have the largest optic tectum volume, followed by the Dwarf. The observed differences in body size and sensory capacities in terms of vision and olfaction in shallow and deepwater morphs likely relates to foraging and mating habitats in Lake Tinnsjoen. Further seasonal and experimental studies of brain volume in polymorphic species are needed to test the role of plasticity and adaptive evolution behind the observed differences.
  • Rinne, Päivi L. H.; Paul, Laju K.; Vahala, Jorma; Kangasjärvi, Jaakko; van der Schoot, Christiaan (2016)
    Axillary buds uniquely regulate gibberellin (GA) pathway genes, enabling them to stay inhibited but simultaneously poised for growth. Decapitation promotes expression of GA-inducible 1,3-beta-glucanase genes that function to reinvigorate symplasmic connections to the stem.Axillary buds (AXBs) of hybrid aspen (Populus tremulaxP. tremuloides) contain a developing dwarfed shoot that becomes para-dormant at the bud maturation point. Para-dormant AXBs can grow out after stem decapitation, while dormant AXBs pre-require long-term chilling to release them from dormancy. The latter is mediated by gibberellin (GA)-regulated 1,3-beta-glucanases, but it is unknown if GA is also important in the development, activation, and outgrowth of para-dormant AXBs. The present data show that para-dormant AXBs up-regulate GA receptor genes during their maturation, but curtail GA biosynthesis by down-regulating the rate-limiting GIBBERELLIN 3-OXIDASE2 (GA3ox2), which is characteristically expressed in the growing apex. However, decapitation significantly up-regulated GA3ox2 and GA(4)-responsive 1,3-beta-glucanases (GH17-family; alpha-clade). In contrast, decapitation down-regulated gamma-clade 1,3-beta-glucanases, which were strongly up-regulated in maturing AXBs concomitant with lipid body accumulation. Overexpression of selected GH17 members in hybrid aspen resulted in characteristic branching patterns. The alpha-clade member induced an acropetal branching pattern, whereas the gamma-clade member activated AXBs in recurrent flushes during transient cessation of apex proliferation. The results support a model in which curtailing the final step in GA biosynthesis dwarfs the embryonic shoot, while high levels of GA precursors and GA receptors keep AXBs poised for growth. GA signaling, induced by decapitation, reinvigorates symplasmic supply routes through GA-inducible 1,3-beta-glucanases that hydrolyze callose at sieve plates and plasmodesmata.
  • Savilammi, Tiina; Papakostas, Spiros; Leder, Erica H.; Vollestad, L. Asbjorn; Debes, Paul V.; Primmer, Craig R. (2021)
    Temperature is a key environmental parameter affecting both the phenotypes and distributions of organisms, particularly ectotherms. Rapid organismal responses to thermal environmental changes have been described for several ectotherms; however, the underlying molecular mechanisms often remain unclear. Here, we studied whole genome cytosine methylation patterns of European grayling (Thymallus thymallus) embryos from five populations with contemporary adaptations of early life history traits at either 'colder' or 'warmer' spawning grounds. We reared fish embryos in a common garden experiment using two temperatures that resembled the 'colder' and 'warmer' conditions of the natal natural environments. Genome-wide methylation patterns were similar in populations originating from colder thermal origin subpopulations, whereas single nucleotide polymorphisms uncovered from the same data identified strong population structure among isolated populations, but limited structure among interconnected populations. This was surprising because the previously studied gene expression response among populations was mostly plastic, and mainly influenced by the developmental temperature. These findings support the hypothesis of the magnified role of epigenetic mechanisms in modulating plasticity. The abundance of consistently changing methylation loci between two warmer-to-colder thermal origin population pairs suggests that local adaptation has shaped the observed methylation patterns. The dynamic nature of the methylomes was further highlighted by genome-wide and site-specific plastic responses. Our findings support both the presence of a plastic response in a subset of CpG loci, and the evolutionary role of methylation divergence between populations adapting to contrasting thermal environments.
  • Maria del Mar Delgadoa,1,2, Tomas Roslinb,2, Gleb Tikhonovc, Evgeniy Meyked, Coong Loc, Eliezer Gurariee, Marina Abadonovaf, Ozodbek Abduraimovg, Olga Adrianovah, Tatiana Akimovai, Muzhigit Akkievj, Aleksandr Ananink,l, Elena Andreevam, Natalia Andriychukn, Maxim Antipino, Konstantin Arzamascevp, Svetlana Babinaq, Miroslav Babushkinr, Oleg Bakins, Anna Barabancovat, Inna Basilskajau, Nina Belovav, Natalia Belyaevaw, Tatjana Bespalovax, Evgeniya Bisikalovay, Anatoly Bobretsovz, Vladimir Bobrovaa, Vadim Bobrovskyibb, Elena Bochkarevacc,dd, Gennady Bogdanovee, Vladimir Bolshakovff, Svetlana Bondarchukgg, Evgeniya Bukharovak,3, Alena Butuninax, Yuri Buyvolovhh, Anna Buyvolovaii, Yuri Bykovjj, Elena Chakhirevas, Olga Chashchinakk, Nadezhda Cherenkovall, Sergej Chistjakovmm, Svetlana Chuhontsevai, Evgeniy A. Davydovcc,nn, Viktor Demchenkooo, Elena Diadichevaoo, Aleksandr Dobrolyubovpp, Ludmila Dostoyevskayaqq, Svetlana Drovninall, Zoya Drozdovajj, Akynaly Dubanaevrr, Yuriy Dubrovsky...; Kurhinen, Juri (2020)
    For species to stay temporally tuned to their environment, they use cues such as the accumulation of degree-days. The relationships between the timing of a phenological event in a population and its environmental cue can be described by a population-level reaction norm. Variation in reaction norms along environmental gradients may either intensify the envi- ronmental effects on timing (cogradient variation) or attenu- ate the effects (countergradient variation). To resolve spatial and seasonal variation in species’ response, we use a unique dataset of 91 taxa and 178 phenological events observed across a network of 472 monitoring sites, spread across the nations of the former Soviet Union. We show that compared to local rates of advancement of phenological events with the advancement of temperature-related cues (i.e., variation within site over years), spatial variation in reaction norms
  • Korponai, Janos; Köver, Csilla; Lopez-Blanco, Charo; Gyulai, Istvan; Forro, Laszlo; Katalinic, Ana; Ketola, Mirva; Nevalainen, Liisa; Luoto, Tomi P.; Sarmaja-Korjonen, Kaarina Margareta; Magyari, Enikö; Weckström, Jan; Urak, Istvan; Vadkerti, Edit; Buczko, Krisztina (2020)
    The body size of aquatic invertebrates is, to a great extent, dependent on ambient temperature, but size distributions are also determined by other factors like food supply and predation. The effect of temperature on organisms is formulated in the temperature-size hypothesis, which predicts a smaller body size with increasing temperature. In this study, the effect of temperature on the subfossil remains of three littoral Cladocera (Alona affnis, A. quadrangularis, and Chydorus cf. sphaericus) was investigated. Exoskeletal remains of these species can be found in large numbers in lacustrine sediments and over a wide north-south range in Europe. The total length of both headshield and postabdomen for A. affinis and A. quadrangularis and carapace length for C. cf. sphaericus were measured to observe their response to changes in latitude and temperature. A different response to ambient temperature in the growth of body parts was observed. The size of the headshields of both Alona species and of the carapace of Chydorus was significantly larger in colder regions as opposed to warm ones. It turned out that the postabdomen was not a good predictor of ambient temperature. While the sizes of all remains increased with latitude, the sizes of the Alona remains was smaller in the mountain lakes of the Southern Carpathians than in other cold lakes, in this case in Finland, a fact indicative of the importance of other factors on size distribution. This study demonstrates that a morphological response to climate is present in littoral cladocerans, and, therefore, changes in the length of headshield and carapace may be used as a proxy for climate changes in paleolimnological records.
  • Yu, Lei; Song, Mengya; Lei, Yanbao; Korpelainen, Helena; Niinemets, Ulo; Li, Chunyang (2019)
    Leaf and root systems are known to show a high degree of developmental plasticity in response to the local environment. However, few studies have investigated simultaneously the leaf and root traits as affected by competition and phosphorus (P) fertilization, especially in connection with the primary succession. We investigated morphological and physiological responses to different competition treatments (infra- vs. interspecific competition) and P regimes in seedlings of Abies fabri and Picea brachytyla, collected from the late succession stage Hailuogou glacier retreat area. A. fabri had a greater total chlorophyll content and specific leaf area (SLA), higher leaf nitrogen (N) and P concentrations, as well as a higher water use efficiency (assessed by the carbon isotope composition, delta C-13) and N absorption relative to P. brachytyla under P fertilization conditions, and its total biomass responded more strongly to P fertilization, especially under interspecific competition. P fertilization decreased the specific root length (SRL) and ectomycorrhizal infection in both species and specific root tip density in P. brachytyla but it had no effect on the average root diameter. We concluded that similar changes in root characteristics, but the superior performance of above-ground traits in A. fabri in response to P availability, especially under competition, explain the greater competitive capacity of A. fabri at final stages of succession. These findings highlight the influence of soil nutrition availability and competition on the functional traits of plants and contribute to the understanding of the role of relative modifications in leaf and root traits during succession.
  • Visser, Marcel E.; Gienapp, Phillip; Husby, Arild; Morrisey, Michael; de la Hera, Ivan; Pulido, Francisco; Both, Christiaan (2015)
    Climate change has differentially affected the timing of seasonal events for interacting trophic levels, and this has often led to increased selection on seasonal timing. Yet, the environmental variables driving this selection have rarely been identified, limiting our ability to predict future ecological impacts of climate change. Using a dataset spanning 31 years from a natural population of pied flycatchers (Ficedula hypoleuca), we show that directional selection on timing of reproduction intensified in the first two decades (1980-2000) but weakened during the last decade (2001-2010). Against expectation, this pattern could not be explained by the temporal variation in the phenological mismatch with food abundance. We therefore explored an alternative hypothesis that selection on timing was affected by conditions individuals experience when arriving in spring at the breeding grounds: arriving early in cold conditions may reduce survival. First, we show that in female recruits, spring arrival date in the first breeding year correlates positively with hatch date; hence, early-hatched individuals experience colder conditions at arrival than late-hatched individuals. Second, we show that when temperatures at arrival in the recruitment year were high, early-hatched young had a higher recruitment probability than when temperatures were low. We interpret this as a potential cost of arriving early in colder years, and climate warming may have reduced this cost. We thus show that higher temperatures in the arrival year of recruits were associated with stronger selection for early reproduction in the years these birds were born. As arrival temperatures in the beginning of the study increased, but recently declined again, directional selection on timing of reproduction showed a nonlinear change. We demonstrate that environmental conditions with a lag of up to two years can alter selection on phenological traits in natural populations, something that has important implications for our understanding of how climate can alter patterns of selection in natural populations.
  • de Jong, M. A.; Saastamoinen, Marjo (2018)
    Thermal tolerance has a major effect on individual fitness and species distributions and can be determined by genetic variation and phenotypic plasticity. We investigate the effects of developmental and adult thermal conditions on cold tolerance, measured as chill coma recovery (CCR) time, during the early and late adult stage in the Glanville fritillary butterfly. We also investigate the genetic basis of cold tolerance by associating CCR variation with polymorphisms in candidate genes that have a known role in insect physiology. Our results demonstrate that a cooler developmental temperature leads to reduced cold tolerance in the early adult stage, whereas cooler conditions during the adult stage lead to increased cold tolerance. This suggests that adult acclimation, but not developmental plasticity, of adult cold tolerance is adaptive. This could be explained by the ecological conditions the Glanville fritillary experiences in the field, where temperature during early summer, but not spring, is predictive of thermal conditions during the butterfly's flight season. In addition, an amino acid polymorphism (Ala-Glu) in the gene flightin, which has a known function in insect flight and locomotion, was associated with CCR. These amino acids have distinct biochemical properties and may thus affect protein function and/or structure. To our knowledge, our study is the first to link genetic variation in flightin to cold tolerance, or thermal adaptation in general.
  • Toli, Elisavet A.; Noreikiene, Kristina; De Faveri, Jacquelin; Merila, Juha (2017)
    Evidence for phenotypic plasticity in brain size and the size of different brain parts is widespread, but experimental investigations into this effect remain scarce and are usually conducted using individuals from a single population. As the costs and benefits of plasticity may differ among populations, the extent of brain plasticity may also differ from one population to another. In a common garden experiment conducted with three-spined sticklebacks (Gasterosteus aculeatus) originating from four different populations, we investigated whether environmental enrichment (aquaria provided with structural complexity) caused an increase in the brain size or size of different brain parts compared to controls (bare aquaria). We found no evidence for a positive effect of environmental enrichment on brain size or size of different brain parts in either of the sexes in any of the populations. However, in all populations, males had larger brains than females, and the degree of sexual size dimorphism (SSD) in relative brain size ranged from 5.1 to 11.6% across the populations. Evidence was also found for genetically based differences in relative brain size among populations, as well as for plasticity in the size of different brain parts, as evidenced by consistent size differences among replicate blocks that differed in their temperature.
  • Gonda, Maria Abigel; Herczeg, Gabor; Merilä, Juha (2013)
  • Herczeg, Gabor; Gonda, Maria Abigel; Balazs, Gergely; Noreikiene, Kristina; Merila, Juha (2015)
    Background: Plasticity in brain size and the size of different brain regions during early ontogeny is known from many vertebrate taxa, but less is known about plasticity in the brains of adults. In contrast to mammals and birds, most parts of a fish's brain continue to undergo neurogenesis throughout adulthood, making lifelong plasticity in brain size possible. We tested whether maturing adult three-spined sticklebacks (Gasterosteus aculeatus) reared in a stimulus-poor environment exhibited brain plasticity in response to environmental enrichment, and whether these responses were sex-specific, thus altering the degree of sexual size dimorphism in the brain. Results: Relative sizes of total brain and bulbus olfactorius showed sex-specific responses to treatment: males developed larger brains but smaller bulbi olfactorii than females in the enriched treatment. Hence, the degree of sexual size dimorphism (SSD) in relative brain size and the relative size of the bulbus olfactorius was found to be environment-dependent. Furthermore, the enriched treatment induced development of smaller tecta optica in both sexes. Conclusions: These results demonstrate that adult fish can alter the size of their brain (or brain regions) in response to environmental stimuli, and these responses can be sex-specific. Hence, the degree of SSD in brain size can be environment-dependent, and our results hint at the possibility of a large plastic component to SSD in stickleback brains. Apart from contributing to our understanding of the processes shaping and explaining variation in brain size and the size of different brain regions in the wild, the results show that provision of structural complexity in captive environments can influence brain development. Assuming that the observed plasticity influences fish behaviour, these findings may also have relevance for fish stocking, both for economical and conservational purposes.
  • Kotta, Jonne; Vanhatalo, Jarno Petteri; Jänes, Holger; Orav-Kotta, Helen; Rugiu, Luca; Jormalainen, Veijo; Bobsien, Ivo; Viitasalo, Markku; Virtanen, Elina; Nyström Sandman, Antonia; Isaeus, Martin; Leidenberger, Sonja; Jonsson, Per R.; Johannesson, Kerstin (2019)
    Predictive species distribution models are mostly based on statistical dependence between environmental and distributional data and therefore may fail to account for physiological limits and biological interactions that are fundamental when modelling species distributions under future climate conditions. Here, we developed a state-of-the-art method integrating biological theory with survey and experimental data in a way that allows us to explicitly model both physical tolerance limits of species and inherent natural variability in regional conditions and thereby improve the reliability of species distribution predictions under future climate conditions. By using a macroalga-herbivore association (Fucus vesiculosus - Idotea balthica) as a case study, we illustrated how salinity reduction and temperature increase under future climate conditions may significantly reduce the occurrence and biomass of these important coastal species. Moreover, we showed that the reduction of herbivore occurrence is linked to reduction of their host macroalgae. Spatial predictive modelling and experimental biology have been traditionally seen as separate fields but stronger interlinkages between these disciplines can improve species distribution projections under climate change. Experiments enable qualitative prior knowledge to be defined and identify cause-effect relationships, and thereby better foresee alterations in ecosystem structure and functioning under future climate conditions that are not necessarily seen in projections based on non-causal statistical relationships alone.
  • Woestmann, Luisa; Stucki, Dimitri; Saastamoinen, Marjo (2019)
    Life history strategies often shape biological interactions by specifying the parameters for possible encounters, such as the timing, frequency, or way of exposure to parasites. Consequentially, alterations in life-history strategies are closely intertwined with such interaction processes. Understanding the connection between life-history alterations and host-parasite interactions can therefore be important to unveil potential links between adaptation to environmental change and changes in interaction processes. Here, we studied how two different host-parasite interaction processes, oral and hemocoelic exposure to bacteria, affect various life histories of the Glanville fritillary butterfly Melitaea cinxia. We either fed or injected adult butterflies with the bacterium Micrococcus luteus and observed for differences in immune defenses, reproductive life histories, and longevity, compared to control exposures. Our results indicate differences in how female butterflies adapt to the two exposure types. Orally infected females showed a reduction in clutch size and an earlier onset of reproduction, whereas a reduction in egg weight was observed for hemocoelically exposed females. Both exposure types also led to shorter intervals between clutches and a reduced life span. These results indicate a relationship between host-parasite interactions and changes in life-history strategies. This relationship could cast restrictions on the ability to adapt to new environments and consequentially influence the population dynamics of a species in changing environmental conditions.
  • Varón-González, Ceferino; Fraimout, Antoine; Delapré, Arnaud; Debat, Vincent; Cornette, Raphaël (2020)
    Phenotypic plasticity has been repeatedly suggested to facilitate adaptation to new environmental conditions, as in invasions. Here, we investigate this possibility by focusing on the worldwide invasion of Drosophila suzukii: an invasive species that has rapidly colonized all continents over the last decade. This species is characterized by a highly developed ovipositor, allowing females to lay eggs through the skin of ripe fruits. Using a novel approach based on the combined use of scanning electron microscopy and photogrammetry, we quantified the ovipositor size and three-dimensional shape, contrasting invasive and native populations raised at three different developmental temperatures. We found a small but significant effect of temperature and geographical origin on the ovipositor shape, showing the occurrence of both geographical differentiation and plasticity to temperature. The shape reaction norms are in turn strikingly similar among populations, suggesting very little difference in shape plasticity among invasive and native populations, and therefore rejecting the hypothesis of a particular role for the plasticity of the ovipositor in the invasion success. Overall, the ovipositor shape seems to be a fairly robust trait, indicative of stabilizing selection. The large performance spectrum rather than the flexibility of the ovipositor would thus contribute to the success of D. suzukii worldwide invasion.
  • Jessen, Maria-Theresa; Kaarlejärvi, Elina; Olofsson, Johan; Eskelinen, Anu (2020)
    Variation in intraspecific traits is one important mechanism that can allow plant species to respond to global changes. Understanding plant trait responses to environmental changes such as grazing patterns, nutrient enrichment and climate warming is, thus, essential for predicting the composition of future plant communities. We measured traits of eight common tundra species in a fully factorial field experiment with mammalian herbivore exclusion, fertilization, and passive warming, and assessed how trait responsiveness to the treatments was associated with abundance changes in those treatments. Herbivory exhibited the strongest impact on traits. Exclusion of herbivores increased vegetative plant height by 50% and specific leaf area (SLA) by 19%, and decreased foliar C:N by 11%; fertilization and warming also increased height and SLA but to a smaller extent. Herbivory also modulated intraspecific height, SLA and foliar C:N responses to fertilization and warming, and these interactions were species-specific. Furthermore, herbivory affected how trait change translated into relative abundance change: increased height under warming and fertilization was more positively related to abundance change inside fences than in grazed plots. Our findings highlight the key role of mammalian herbivory when assessing intraspecific trait change in tundra and its consequences for plant performance under global changes.
  • Candolin, Ulrika (2019)
    Human activities by altering environmental conditions are influencing the mate choice of animals. This is by impacts on: (i) the production and expression of traits evaluated by mate choosers; (ii) the transmission of information about potential mates to choosers; (iii) the reception and processing of the information by choosers; and (iv) the final mate choice. Here, I first discuss how these four stages of the mate-choice process can be altered by environmental change, and how these alterations, in turn, can influence individuals, populations, and communities. Much evidence exists for human-induced environmental changes influencing mate choice, but the consequences for the fitness of courters and choosers are less well known, and even less is known about the impact on population dynamics, species interactions and community composition. More evidence exists for altered mate-choice systems influencing interspecific matings and thereby community composition and biodiversity. I then consider whether plastic adjustments and evolutionary changes can rescue adaptive mate-choice systems, and reflect on the possibility of non-adaptive mate-choice systems becoming less maladaptive under environmental change. Much evidence exists for plastic adjustments of mate-choice systems, but whether these are adaptive is seldom known, as is the contribution of genetic changes. Finally, I contemplate the possibility of mate-choice systems rescuing populations from decline in changing environments. I explain how this is context dependent with both positive and negative outcomes possible. In summary, while much evidence exists for human-induced environmental changes influencing mate-choice systems, less is known about the consequences for ecological and evolutionary processes. Considering the importance that mate choice plays in determining individual fitness and population viability, the effects of environmental change on mate-choice systems should be considered in studies on the ecological and evolutionary consequences of human disturbances to habitats.
  • Verspagen, Nadja; Ikonen, Suvi; Saastamoinen, Marjo; van Bergen, Erik (2020)
    Variation in environmental conditions during development can lead to changes in life-history traits with long-lasting effects. Here, we study how variation in temperature and host plant (i.e. the consequences of potential maternal oviposition choices) affects a suite of life-history traits in pre-diapause larvae of the Glanville fritillary butterfly. We focus on offspring survival, larval growth rates and relative fat reserves, and pay specific attention to intraspecific variation in the responses (G × E × E). Globally, thermal performance and survival curves varied between diets of two host plants, suggesting that host modifies the temperature impact, or vice versa. Additionally, we show that the relative fat content has a host-dependent, discontinuous response to developmental temperature. This implies that a potential switch in resource allocation, from more investment in growth at lower temperatures to storage at higher temperatures, is dependent on the larval diet. Interestingly, a large proportion of the variance in larval performance is explained by differences among families, or interactions with this variable. Finally, we demonstrate that these family-specific responses to the host plant remain largely consistent across thermal environments. Together, the results of our study underscore the importance of paying attention to intraspecific trait variation in the field of evolutionary ecology.
  • Delgado, Maria del Mar; Caferri, Eleonora; Mendez, Maria; Godoy, Jose A.; Campioni, Letizia; Penteriani, Vincenzo (2013)
    Individual variability influences the demographic and evolutionary dynamics of spatially structured populations, and conversely ecological and evolutionary dynamics provide the context under which variations at the individual level occur. Therefore, it is essential to identify and characterize the importance of the different factors that may promote or hinder individual variability. Animal signaling is a prime example of a type of behavior that is largely dependent on both the features of individuals and the characteristics of the population to which they belong. After 10 years studying the dynamics of a population of a long-lived species, the eagle owl (Bubo bubo), we investigated the emergence and maintenance of traits that reveal individual identity by focusing on vocal features. We found that individuals inhabiting a high density population characterized by a relative lack of heterogeneity (in terms of prey availability and breeding success) among breeding sites might be selected for reducing the levels of identity. Two non-mutually exclusive hypotheses may explain the structural call patterns we detected: (1) similarity in calls may be principally a consequence of the particular characteristics of the population; and (2) high density may encourage individuals to mimic each other’s vocalizations in a cascade effect, leading to a widespread and unique communication network.
  • Almeida, Diana Abondano; Mappes, Johanna; Gordon, Swanne (2021)
    Predator-induced plasticity in life-history and antipredator traits during the larval period has been extensively studied in organisms with complex life-histories. However, it is unclear whether different levels of predation could induce warning signals in aposematic organisms. Here, we investigated whether predator-simulated handling affects warning coloration and life-history traits in the aposematic wood tiger moth larva, Arctia plantaginis. As juveniles, a larger orange patch on an otherwise black body signifies a more efficient warning signal against predators but this comes at the costs of conspicuousness and thermoregulation. Given this, one would expect that an increase in predation risk would induce flexible expression of the orange patch. Prior research in this system points to plastic effects being important as a response to environmental changes for life history traits, but we had yet to assess whether this was the case for predation risk, a key driver of this species evolution. Using a full-sib rearing design, in which individuals were reared in the presence and absence of a non-lethal simulated bird attack, we evaluated flexible responses of warning signal size (number of orange segments), growth, molting events, and development time in wood tiger moths. All measured traits except development time showed a significant response to predation. Larvae from the predation treatment developed a more melanized warning signal (smaller orange patch), reached a smaller body size, and molted more often. Our results suggest plasticity is indeed important in aposematic organisms, but in this case may be complicated by the trade-off between costly pigmentation and other life-history traits.
  • Halali, Sridhar; Halali, Dheeraj; Barlow, Henry S.; Molleman, Freerk; Kodandaramaiah, Ullasa; Brakefield, Paul M.; Brattstrom, Oskar (2021)
    Phenotypic plasticity in heterogeneous environments can provide tight environment-phenotype matching. However, the prerequisite is a reliable environmental cue(s) that enables organisms to use current environmental information to induce the development of a phenotype with high fitness in a forthcoming environment. Here, we quantify predictability in the timing of precipitation and temperature change to examine how this is associated with seasonal polyphenism in tropical Mycalesina butterflies. Seasonal precipitation in the tropics typically results in distinct selective environments, the wet and dry seasons, and changes in temperature can be a major environmental cue. We sampled communities of Mycalesina butterflies from two seasonal locations and one aseasonal location. Quantifying environmental predictability using wavelet analysis and Colwell's indices confirmed a strong periodicity of precipitation over a 12-month period at both seasonal locations compared to the aseasonal one. However, temperature seasonality and periodicity differed between the two seasonal locations. We further show that: (a) most females from both seasonal locations synchronize their reproduction with the seasons by breeding in the wet season but arresting reproduction in the dry season. In contrast, all species breed throughout the year in the aseasonal location and (b) species from the seasonal locations, but not those from the aseasonal location, exhibited polyphenism in wing pattern traits (eyespot size). We conclude that seasonal precipitation and its predictability are primary factors shaping the evolution of polyphenism in Mycalesina butterflies, and populations or species secondarily evolve local adaptations for cue use that depend on the local variation in the environment.