Browsing by Subject "PHOSPHORYLATION"

Sort by: Order: Results:

Now showing items 1-20 of 51
  • Okutachi, Sunday; Manoharan, Ganesh Babu; Kiriazis, Alexandros; Laurini, Christina; Catillon, Marie; McCormick, Frank; Yli-Kauhaluoma, Jari; Abankwa, Daniel (2021)
    Recently, the highly mutated oncoprotein K-Ras4B (hereafter K-Ras) was shown to drive cancer cell stemness in conjunction with calmodulin (CaM). We previously showed that the covalent CaM inhibitor ophiobolin A (OphA) can potently inhibit K-Ras stemness activity. However, OphA, a fungus-derived natural product, exhibits an unspecific, broad toxicity across all phyla. Here we identified a less toxic, functional analog of OphA that can efficiently inactivate CaM by covalent inhibition. We analyzed a small series of benzazulenones, which bear some structural similarity to OphA and can be synthesized in only six steps. We identified the formyl aminobenzazulenone 1, here named Calmirasone1, as a novel and potent covalent CaM inhibitor. Calmirasone1 has a 4-fold increased affinity for CaM as compared to OphA and was active against K-Ras in cells within minutes, as compared to hours required by OphA. Calmirasone1 displayed a 2.5-4.5-fold higher selectivity for KRAS over BRAF mutant 3D spheroid growth than OphA, suggesting improved relative on-target activity. Importantly, Calmirasone1 has a 40-260-fold lower unspecific toxic effect on HRAS mutant cells, while it reaches almost 50% of the activity of novel K-RasG12C specific inhibitors in 3D spheroid assays. Our results suggest that Calmirasone1 can serve as a new tool compound to further investigate the cancer cell biology of the K-Ras and CaM associated stemness activities.
  • Su, Jing; Ekman, Carl; Oskolkov, Nikolay; Lahti, Leo; Ström, Kristoffer; Brazma, Alvis; Groop, Leif; Rung, Johan; Hansson, Ola (2015)
    Background: Although high-throughput studies of gene expression have generated large amounts of data, most of which is freely available in public archives, the use of this valuable resource is limited by computational complications and non-homogenous annotation. To address these issues, we have performed a complete re-annotation of public microarray data from human skeletal muscle biopsies and constructed a muscle expression compendium consisting of nearly 3000 samples. The created muscle compendium is a publicly available resource including all curated annotation. Using this data set, we aimed to elucidate the molecular mechanism of muscle aging and to describe how physical exercise may alleviate negative physiological effects. Results: We find 957 genes to be significantly associated with aging (p <0.05, FDR = 5 %, n = 361). Aging was associated with perturbation of many central metabolic pathways like mitochondrial function including reduced expression of genes in the ATP synthase, NADH dehydrogenase, cytochrome C reductase and oxidase complexes, as well as in glucose and pyruvate processing. Among the genes with the strongest association with aging were H3 histone, family 3B (H3F3B, p = 3.4 x 10(-13)), AHNAK nucleoprotein, desmoyokin (AHNAK, p = 6.9 x 10(-12)), and histone deacetylase 4 (HDAC4, p = 4.0 x 10(-9)). We also discover genes previously not linked to muscle aging and metabolism, such as fasciculation and elongation protein zeta 2 (FEZ2, p = 2.8 x 10(-8)). Out of the 957 genes associated with aging, 21 (p <0.001, false discovery rate = 5 %, n = 116) were also associated with maximal oxygen consumption (VO2MAX). Strikingly, 20 out of those 21 genes are regulated in opposite direction when comparing increasing age with increasing VO2MAX. Conclusions: These results support that mitochondrial dysfunction is a major age-related factor and also highlight the beneficial effects of maintaining a high physical capacity for prevention of age-related sarcopenia.
  • Gustafsson, Manuela O.; Mohammad, Dara K.; Ylosmaki, Erkko; Choi, Hyunseok; Shrestha, Subhash; Wang, Qing; Nore, Beston F.; Saksela, Kalle; Smith, C. I. Edvard (2017)
    Bruton's Tyrosine Kinase (BTK) is a cytoplasmic protein tyrosine kinase with a fundamental role in B-lymphocyte development and activation. The nucleocytoplasmic shuttling of BTK is specifically modulated by the Ankyrin Repeat Domain 54 (ANKRD54) protein and the interaction is known to be exclusively SH3-dependent. To identify the spectrum of the ANKRD54 SH3-interactome, we applied phage-display screening of a library containing all the 296 human SH3 domains. The BTK-SH3 domain was the prime interactor. Quantitative western blotting analysis demonstrated the accuracy of the screening procedure. Revealing the spectrum and specificity of ANKRD54-interactome is a critical step toward functional analysis in cells and tissues.
  • Sobral-Leite, Marcelo; Wesseling, Jelle; Smit, Vincent T. H. B. M.; Nevanlinna, Heli; van Miltenburg, Martine H.; Sanders, Joyce; Hofland, Ingrid; Blows, Fiona M.; Coulson, Penny; Patrycja, Gazinska; Schellens, Jan H. M.; Fagerholm, Rainer; Heikkila, Paivi; Aittomaki, Kristiina; Blomqvist, Carl; Provenzano, Elena; Ali, Hamid Raza; Figueroa, Jonine; Sherman, Mark; Lissowska, Jolanta; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Phillips, Kelly-Anne; Couch, Fergus J.; Olson, Janet E.; Vachon, Celine; Visscher, Daniel; Brenner, Hermann; Butterbach, Katja; Arndt, Volker; Holleczek, Bernd; Hooning, Maartje J.; Hollestelle, Antoinette; Martens, John W. M.; van Deurzen, Carolien H. M.; van de Water, Bob; Broeks, Annegien; Chang-Claude, Jenny; Chenevix-Trench, Georgia; Easton, Douglas F.; Pharoah, Paul D. P.; Garcia-Closas, Montserrat; de Graauw, Marjo; Schmidt, Marjanka K.; kConFab AOCS Investigators (2015)
    Background: Annexin A1 (ANXA1) is a protein related with the carcinogenesis process and metastasis formation in many tumors. However, little is known about the prognostic value of ANXA1 in breast cancer. The purpose of this study is to evaluate the association between ANXA1 expression, BRCA1/2 germline carriership, specific tumor subtypes and survival in breast cancer patients. Methods: Clinical-pathological information and follow-up data were collected from nine breast cancer studies from the Breast Cancer Association Consortium (BCAC) (n = 5,752) and from one study of familial breast cancer patients with BRCA1/2 mutations (n = 107). ANXA1 expression was scored based on the percentage of immunohistochemical staining in tumor cells. Survival analyses were performed using a multivariable Cox model. Results: The frequency of ANXA1 positive tumors was higher in familial breast cancer patients with BRCA1/2 mutations than in BCAC patients, with 48.6 % versus 12.4 %, respectively; P <0.0001. ANXA1 was also highly expressed in BCAC tumors that were poorly differentiated, triple negative, EGFR-CK5/6 positive or had developed in patients at a young age. In the first 5 years of follow-up, patients with ANXA1 positive tumors had a worse breast cancer-specific survival (BCSS) than ANXA1 negative (HRadj = 1.35; 95 % CI = 1.05-1.73), but the association weakened after 10 years (HRadj = 1.13; 95 % CI = 0.91-1.40). ANXA1 was a significant independent predictor of survival in HER2+ patients (10-years BCSS: HRadj = 1.70; 95 % CI = 1.17-2.45). Conclusions: ANXA1 is overexpressed in familial breast cancer patients with BRCA1/2 mutations and correlated with poor prognosis features: triple negative and poorly differentiated tumors. ANXA1 might be a biomarker candidate for breast cancer survival prediction in high risk groups such as HER2+ cases.
  • Leino, Sakari; Koski, Sini K.; Hänninen, Raisa; Tapanainen, Tuukka; Rannanpää, Saara; Salminen, Outi (2018)
    Preclinical studies suggest the involvement of various subtypes of nicotinic acetylcholine receptors in the pathophysiology of Parkinson's disease, a neurodegenerative disorder characterized by the death of dopaminergic neurons in the substantia nigra pars compacta (SNC). We studied for the first time the effects of alpha 5 nicotinic receptor subunit gene deletion on motor behavior and neurodegeneration in mouse models of Parkinson's disease and levodopa-induced dyskinesia. Unilateral dopaminergic lesions were induced in wild-type and alpha 5-KO mice by 6-hydroxydopamine injections into the striatum or the medial forebrain bundle. Subsequently, rotational behavior induced by dopaminergic drugs was measured. A subset of animals received chronic treatments with levodopa and nicotine to assess levodopa-induced dyskinesia and antidyskinetic effects by nicotine. SNC lesion extent was assessed with tyrosine hydroxylase immunohistochemistry and stereological cell counting. Effects of alpha 5 gene deletion on the dopaminergic system were investigated by measuring ex vivo striatal dopamine transporter function and protein expression, dopamine and metabolite tissue concentrations and dopamine receptor mRNA expression. Hemiparkinsonian alpha 5-KO mice exhibited attenuated rotational behavior after amphetamine injection and attenuated levodopa-induced dyskinesia. In the intrastriatal lesion model, dopaminergic cell loss in the medial cluster of the SNC was less severe in alpha 5-KO mice. Decreased striatal dopamine uptake in alpha 5-KO animals suggested reduced dopamine transporter function as a mechanism of attenuated neurotoxicity. Nicotine reduced dyskinesia severity in wild-type but not alpha 5-KO mice. The attenuated dopaminergic neurodegeneration and motor dysfunction observed in hemiparkinsonian alpha 5KO mice suggests potential for alpha 5 subunit-containing nicotinic receptors as a novel target in the treatment of Parkinson's disease. (C) 2018 The Authors. Published by Elsevier Ltd.
  • Kilpeläinen, Tommi; Julku, Ulrika; Svarcbahs, Reinis; Myöhänen, Timo (2019)
    Alpha-synuclein (aSyn) is the main component of Lewy bodies, the histopathological marker in Parkinson's disease (PD), and point mutations and multiplications of the aSyn coding SNCA gene correlate with early onset PD. Therefore, various transgenic mouse models overexpressing native or point-mutated aSyn have been developed. Although these models show highly increased aSyn expression they rarely capture dopaminergic cell loss and show a behavioural phenotype only at old age, whereas SNCA mutations are risk factors for PD with earlier onset. The aim of our study was to re-characterize a transgenic mouse strain carrying both A30P and A53T mutated human aSyn. Our study revealed decreased locomotor activity for homozygous transgenic mice starting from 3 months of age which was different from previous studies with this mouse strain that had behavioural deficits starting only after 7-9 months. Additionally, we found a decreased amphetamine response in locomotor activity and decreased extracellular dopaminergic markers in the striatum and substantia nigra with significantly elevated levels of aSyn oligomers. In conclusion, homozygous transgenic A30P*A53T aSyn mice capture several phenotypes of PD with early onset and could be a useful tool for aSyn studies.
  • Kohtala, Samuel; Theilmann, Wiebke; Suomi, Tomi; Wigren, Henna-Kaisa; Porkka-Heiskanen, Tarja; Elo, Laura L.; Rokka, Anne; Rantamaki, Tomi (2016)
    Anesthetics are widely used in medical practice and experimental research, yet the neurobiological basis governing their effects remains obscure. We have here used quantitative phosphoproteomics to investigate the protein phosphorylation changes produced by a 30 min isoflurane anesthesia in the adult mouse hippocampus. Altogether 318 phosphorylation alterations in total of 237 proteins between sham and isoflurane anesthesia were identified. Many of the hit proteins represent primary pharmacological targets of anesthetics. However, findings also enlighten the role of several other proteins implicated in various biological processes including neuronal excitability, brain energy homeostasis, synaptic plasticity and transmission, and microtubule function as putative (secondary) targets of anesthetics. In particular, isoflurane increases glycogen synthase kinase-3 beta (GSK3 beta) phosphorylation at the inhibitory Ser(9) residue and regulates the phosphorylation of multiple proteins downstream and upstream of this promiscuous kinase that regulate diverse biological functions. Along with confirmatory Western blot data for GSK3 beta and p44/42-MAPK (mitogen-activated protein kinase; reduced phosphorylation of the activation loop), we observed increased phosphorylation of microtubule-associated protein 2 (MAP2) on residues (Thr(1620,1623)) that have been shown to render its dissociation from microtubules and alterations in microtubule stability. We further demonstrate that diverse anesthetics (sevoflurane, urethane, ketamine) produce essentially similar phosphorylation changes on GSK3 beta, p44/p42-MAPK, and MAP2 as observed with isoflurane. Altogether our study demonstrates the potential of quantitative phosphoproteomics to study the mechanisms of anesthetics (and other drugs) in the mammalian brain and reveals how already a relatively brief anesthesia produces pronounced phosphorylation changes in multiple proteins in the central nervous system.
  • Leikas, Juuso V.; Kohtala, Samuel; Theilmann, Wiebke; Jalkanen, Aaro J.; Forsberg, Markus M.; Rantamaki, Tomi (2017)
    Parkinson's disease (PD) is a progressive neurodegenerative movement disorder primarily affecting the nigrostriatal dopaminergic system. The link between heightened activity of glycogen synthase kinase 3 beta (GSK313) and neurodegenerative processes has encouraged investigation into the potential disease-modifying effects of novel GSK3 beta inhibitors in experimental models of PD. Therefore, the intriguing ability of several anesthetics to readily inhibit GSK3 beta within the cortex and hippocampus led us to investigate the effects of brief isoflurane anesthesia on striatal GSK3 beta signaling in nave rats and in a rat model of early-stage PD. Deep but brief (20-min) isoflurane anesthesia exposure increased the phosphorylation of GSK3 beta at the inhibitory Ser9 residue, and induced phosphorylation of AKT(Thr308) (protein kinase B; negative regulator of GSK3 beta) in the striatum of naive rats and rats with unilateral striatal 6-hydroxydopamine (6-OHDA) lesion. The 6-OHDA protocol produced gradual functional deficiency within the nigrostriatal pathway, reflected as a preference for using the limb ipsilateral to the lesioned striatum at 2 weeks post 6-OHDA. Interestingly, such motor impairment was not observed in animals exposed to four consecutive isoflurane treatments (20-min anesthesia every 48 h; treatments started 7 days after 6-OHDA delivery). However, isoflurane had no effect on striatal or nigral tyrosine hydroxylase (a marker of dopaminergic neurons) protein levels. This brief report provides promising results regarding the therapeutic potential and neurobiological mechanisms of anesthetics in experimental models of PD and guides development of novel disease-modifying therapies.
  • Lindholm, Dan; Pham, Dan D.; Cascone, Annunziata; Eriksson, Ove; Wennerberg, Krister; Saarma, Mart (2016)
    Parkinson's disease (PD) is a progressive neurodegenerative disorder causing movement disabilities and several non-motor symptoms in afflicted patients. Recent studies in animal models of PD and analyses of brain specimen from PD patients revealed an increase in the level and activity of the non-receptor tyrosine kinase Abelson (c-Abl) in dopaminergic neurons with phosphorylation of protein substrates, such as alpha-synuclein and the E3 ubiquitin ligase, Parkin. Most significantly inhibition of c-Abl kinase activity by small molecular compounds used in the clinic to treat human leukemia have shown promising neuroprotective effects in cell and animal models of PD. This has raised hope that similar beneficial outcome may also be observed in the treatment of PD patients by using c-Abl inhibitors. Here we highlight the background for the current optimism, reviewing c-Abl and its relationship to pathophysiological pathways prevailing in PD, as well as discussing issues related to the pharmacology and safety of current c-Abl inhibitors. Clearly more rigorously controlled and well-designed trials are needed before the c-Abl inhibitors can be used in the neuroclinic to possibly benefit an increasing number of PD patients.
  • Talman, Virpi; Provenzani, Riccardo; af Gennäs, Gustav Boije; Tuominen, Raimo K.; Yli-Kauhaluoma, Jari (2014)
  • Ciuba, Katarzyna; Hawkes, William; Tojkander, Sari; Kogan, Konstantin; Engel, Ulrike; Iskratsch, Thomas; Lappalainen, Pekka (2018)
    Contractile actomyosin bundles, stress fibers, contribute to morphogenesis, migration, and mechanosensing of non-muscle cells. In addition to actin and non-muscle myosin II (NMII), stress fibers contain a large array of proteins that control their assembly, turnover, and contractility. Calponin-3 (Cnn3) is an actin-binding protein that associates with stress fibers. However, whether Cnn3 promotes stress fiber assembly, or serves as either a positive or negative regulator of their contractility has remained obscure. Here, we applied U2OS osteosarcoma cells as a model system to study the function of Cnn3. We show that Cnn3 localizes to both NMII-containing contractile ventral stress fibers and transverse arcs, as well as to non-contractile dorsal stress fibers that do not contain NMII. Fluorescencerecovery-after-photobleaching experiments revealed that Cnn3 is a dynamic component of stress fibers. Importantly, CRISPR/Cas9 knockout and RNAi knockdown studies demonstrated that Cnn3 is not essential for stress fiber assembly. However, Cnn3 depletion resulted in increased and uncoordinated contractility of stress fibers that often led to breakage of individual actomyosin bundles within the stress fiber network. Collectively these results provide evidence that Cnn3 is dispensable for the assembly of actomyosin bundles, but that it is required for controlling proper contractility of the stress fiber network.
  • Tojkander, Sari; Ciuba, Katarzyna; Lappalainen, Pekka (2018)
    Stress fibers are contractile actomyosin bundles that guide cell adhesion, migration, and morphogenesis. Their assembly and alignment are under precise mechanosensitive control. Thus, stress fiber networks undergo rapid modification in response to changes in biophysical properties of the cell's surroundings. Stress fiber maturation requires mechanosensitive activation of 5 0 AMP-activated protein kinase (AMPK), which phosphorylates vasodilator- stimulated phosphoprotein (VASP) to inhibit actin polymerization at focal adhesions. Here, we identify Ca2+-calmodulin-dependent kinase kinase 2 (CaMKK2) as a critical upstream factor controlling mechanosensitive AMPK activation. CaMKK2 and Ca2+ influxes were enriched around focal adhesions at the ends of contractile stress fibers. Inhibition of either CaMKK2 or mechanosensitive Ca2+ channels led to defects in phosphorylation of AMPK and VASP, resulting in a loss of contractile bundles and a decrease in cell-exerted forces. These data provide evidence that Ca2+, CaMKK2, AMPK, and VASP form a mechanosensitive signaling cascade at focal adhesions that is critical for stress fiber assembly.
  • Pham, Dan Duc; Bruelle, Celine; Do, Hai Thi; Pajanoja, Ceren; Jin, Congyu; Olkkonen, Vesa M.; Eriksson-Rosenberg, Ove; Jauhiainen, Matti; Lalowski, Maciej; Lindholm, Dan (2019)
    Lipid-induced toxicity is part of several human diseases, but the mechanisms involved are not fully understood. Fatty liver is characterized by the expression of different growth and tissue factors. The neurotrophin, nerve growth factor (NGF) and its pro-form, pro-NGF, are present in fatty liver together with p75 neurotrophin receptor (p75NTR). Stimulation of human Huh7 hepatocyte cells with NGF and pro-NGF induced Sterol-regulator-element-binding protein-2 (SREBP2) activation and increased Low-Density Lipoprotein Receptor (LDLR) expression. We observed that phosphorylation of caspase-2 by p38 MAPK was essential for this regulation involving a caspase-3-mediated cleavage of SREBP2. RNA sequencing showed that several genes involved in lipid metabolism were altered in p75NTR-deficient mouse liver. The same lipogenic genes were downregulated in p75NTR gene-engineered human Huh7 cells and reciprocally upregulated by stimulation of p75NTRs. In the knock-out mice the serum cholesterol and triglyceride levels were reduced, suggesting a physiological role of p75NTRs in whole-body lipid metabolism. Taken together, this study shows that p75NTR signaling influences a network of genes involved in lipid metabolism in liver and hepatocyte cells. Modulation of p75NTR signaling may be a target to consider in various metabolic disorders accompanied by increased lipid accumulation.
  • Lantto, Tiina A.; Laakso, Into; Dorman, H. J. Damien; Mauriala, Timo; Hiltunen, Raimo; Köks, Sulev; Raasmaja, Atso (2016)
    Plant phenolics have shown to activate apoptotic cell death in different tumourigenic cell lines. In this study, we evaluated the effects of juniper berry extract (Juniperus communis L.) on p53 protein, gene expression and DNA fragmentation in human neuroblastoma SH-SY5Y cells. In addition, we analyzed the phenolic composition of the extract. We found that juniper berry extract activated cellular relocalization of p53 and DNA fragmentation-dependent cell death. Differentially expressed genes between treated and non-treated cells were evaluated with the cDNA-RDA (representational difference analysis) method at the early time point of apoptotic process when p53 started to be activated and no caspase activity was detected. Twenty one overexpressed genes related to cellular stress, protein synthesis, cell survival and death were detected. Interestingly, they included endoplasmic reticulum (ER) stress inducer and sensor HSPA5 and other ER stress-related genes CALM2 and YKT6 indicating that ER stress response was involved in juniper berry extract mediated cell death. In composition analysis, we identified and quantified low concentrations of fifteen phenolic compounds. The main groups of them were flavones, flavonols, phenolic acids, flavanol and biflavonoid including glycosides of quercetin, apigenin, isoscutellarein and hypolaetin. It is suggested that juniper berry extract induced the p53-associated apoptosis through the potentiation and synergism by several phenolic compounds.
  • Multamäki, Elina; Nanekar, Rahul; Morozov, Dmitry; Lievonen, Topias; Golonka, David; Wahlgren, Weixiao Yuan; Stucki-Buchli, Brigitte; Rossi, Jari; Hytönen, Vesa P.; Westenhoff, Sebastian; Ihalainen, Janne A.; Möglich, Andreas; Takala, Heikki (2021)
    Bacterial phytochrome photoreceptors usually belong to two-component signaling systems which transmit environmental stimuli to a response regulator through a histidine kinase domain. Phytochromes switch between red light-absorbing and far-red light-absorbing states. Despite exhibiting extensive structural responses during this transition, the model bacteriophytochrome from Deinococcus radiodurans (DrBphP) lacks detectable kinase activity. Here, we resolve this long-standing conundrum by comparatively analyzing the interactions and output activities of DrBphP and a bacteriophytochrome from Agrobacterium fabrum (Agp1). Whereas Agp1 acts as a conventional histidine kinase, we identify DrBphP as a light-sensitive phosphatase. While Agp1 binds its cognate response regulator only transiently, DrBphP does so strongly, which is rationalized at the structural level. Our data pinpoint two key residues affecting the balance between kinase and phosphatase activities, which immediately bears on photoreception and two-component signaling. The opposing output activities in two highly similar bacteriophytochromes suggest the use of light-controllable histidine kinases and phosphatases for optogenetics. The bacteriophytochrome DrBphP from Deinococcus radiodurans shows high sequence homology to the histidine kinase Agp1 from Agrobacterium fabrum but lacks kinase activity. Here, the authors structurally and biochemically analyse DrBphP and Agp1, showing that DrBphP is a light-activatable phosphatase.
  • Hasygar, Kiran; Deniz, Onur; Liu, Ying; Gullmets, Josef; Hynynen, Riikka; Ruhanen, Hanna; Kokki, Krista; Kakela, Reijo; Hietakangas, Ville (2021)
    Energy storage and growth are coordinated in response to nutrient status of animals. How nutrient-regulated signaling pathways control these processes in vivo remains insufficiently understood. Here, we establish an atypical MAP kinase, ERK7, as an inhibitor of adiposity and growth in Drosophila. ERK7 mutant larvae display elevated triacylglycerol (TAG) stores and accelerated growth rate, while overexpressed ERK7 is sufficient to inhibit lipid storage and growth. ERK7 expression is elevated upon fasting and ERK7 mutant larvae display impaired survival during nutrient deprivation. ERK7 acts in the fat body, the insect counterpart of liver and adipose tissue, where it controls the subcellular localization of chromatin-binding protein PWP1, a growth-promoting downstream effector of mTOR. PWP1 maintains the expression of sugarbabe, encoding a lipogenic Gli-similar family transcription factor. Both PWP1 and Sugarbabe are necessary for the increased growth and adiposity phenotypes of ERK7 loss-of-function animals. In conclusion, ERK7 is an anti-anabolic kinase that inhibits lipid storage and growth while promoting survival on fasting conditions.
  • Aly, Ashraf A.; El-Sheref, Essmat M.; Bakheet, Momtaz E. M.; Mourad, Mai A. E.; Bräse, Stefan; Ibrahim, Mahmoud A. A.; Nieger, Martin; Garvalov, Boyan K.; Dalby, Kevin N.; Kaoud, Tamer S. (2019)
    Approximately 60% of human cancers exhibit enhanced activity of ERK1 and ERK2, reflecting their multiple roles in tumor initiation and progression. Acquired drug resistance, especially mechanisms associated with the reactivation of the MAPK (RAF/MEK/ERK) pathway represent a major challenge to current treatments of melanoma and several other cancers. Recently, targeting ERK has evolved as a potentially attractive strategy to overcome this resistance. Herein, we report the design and synthesis of novel series of fused naphthofuro[3,2-c] quinoline-6,7,12-triones 3a-f and pyrano[3,2-c]quinoline-6,7,8,13-tetraones 5a,b and 6, as potential ERK inhibitors. New inhibitors were synthesized and identified by different spectroscopic techniques and X-ray crystallography. They were evaluated for their ability to inhibit ERK1/2 in an in vitro radioactive kinase assay. 3b and 6 inhibited ERK1 with IC50s of 0.5 and 0.19 mu M, and inhibited ERK2 with IC50s of 0.6 and 0.16 mu M respectively. Kinetic mechanism studies revealed that the inhibitors are ATP-competitive inhibitors where 6 inhibited ERK2 with a K-i of 0.09 mu M. Six of the new inhibitors were tested for their in vitro anticancer activity against the NCI-60 panel of tumor cell lines. Compound 3b and 6 were the most potent against most of the human tumor cell lines tested. Moreover, 3b and 6 inhibited the proliferation of the BRAF mutant A375 melanoma cells with IC50s of 3.7 and 0.13 mu M, respectively. In addition, they suppressed anchorage-dependent colony formation. Treatment of the A375 cell line with 3b and 6 inhibited the phosphorylation of ERK substrates p-90RSK and ELK-1 and induced apoptosis in a dose dependent manner. Finally, a molecular docking study showed the potential binding mode of 3b and 6 within the ATP catalytic binding site of ERK2.
  • Theilmann, Wiebke; Alitalo, Okko August; Yorke, Iris; Rantamäki, Tomi Pentti Johannes (2019)
    Objectives: Deep burst-suppressing isoflurane anesthesia regulates signaling pathways connected with antidepressant responses in the rodent brain: activation of TrkB neurotrophin receptor and inhibition of GSK3 beta kinase (glycogen synthase kinase 3 beta). The main objective of this study was to investigate whether EEG (electroencephalogram) burst suppression correlates with these intriguing molecular alterations induced by isoflurane. Methods: Adult male mice pre-implanted with EEG recording electrodes were subjected to varying concentrations of isoflurane (1.0-2.0% ad 20 min) after which medial prefrontal cortex samples were collected for molecular analyses, and the data retrospectively correlated to EEG ( + /- burst suppression). Results: Isoflurane dose-dependently increased phosphorylation of TrkB(Y816), CREBS133 (cAMP response element binding protein), GSK3 beta(S9) and p70S6k(T412/S424). The time spent in burst suppression mode varied considerably between individual animals. Notably, a subset of animals subjected to 1.0-1.5% isoflurane showed no burst suppression. While p-GSK3 beta(S9), p-CREBS133 and p-p70S6k(T412/S424) levels were increased in the samples obtained also from these animals, p-TrkB(Y816) levels remained unaltered. Conclusions: Isoflurane dose-dependently regulates TrkB and GSK3 beta signaling and dosing associated with therapeutic outcomes in depressed patients produces most prominent effects.
  • Batchu, Krishna Chaithanya; Hänninen, Satu; Jha, Sawan Kumar; Jeltsch, Michael; Somerharju, Pentti (2016)
    Cytosolic phospholipase A(2) alpha (cPLA(2)alpha) plays a key role in signaling in mammalian cells by releasing arachidonic acid (AA) from glycerophospholipids (GPLs) but the factors determining the specificity of cPLA(2)alpha for AA- containing GPLs are not well understood. Accordingly, we investigated those factors by determining the activity of human cPLA(2)alpha towards a multitude of GPL species present in micelles or bilayers. Studies on isomeric PC sets containing a saturated acyl chain of 6 to 24 carbons in the sn1 or sn2 position in micelles showed an abrupt decrease in hydrolysis when the length of the snl or sn2 chain exceeded 17 carbons suggesting that the acyl binding cavity on the enzyme is of the corresponding length. Notably, the saturated isomer pairs were hydrolyzed identically in micelles as well as in bilayers suggesting promiscuous binding of acyl chains to the active site of cPLA(2)alpha. Such promiscuous binding would explain the previous finding that cPLA(2)alpha has both PLA(1) and PLA(2) activities. Interestingly, increasing the length of either the sn1 or sn2 acyl chain inhibited the hydrolysis in bilayers far more than that in micelles suggesting that with micelles (loosely packed) substrate accommodation at the active site of cPLA(2)alpha is rate-limiting, while with bilayers (tightly packed) upward movement of the substrate from the bilayer (efflux) is the rate-limiting step. With the AA-containing PCs, the length of the saturated acyl chain also had a much stronger effect on hydrolysis in bilayers vs. micelles in agreement with this model. In contrast to saturated PCs, a marked isomer preference was observed for AA-containing PCs both in micelles and bilayers. In conclusion, these data significantly help to understand the mode of action and specificity of cPLA(2)alpha. (C) 2016 Elsevier B.V. All rights reserved.