Browsing by Subject "POLYCYCLIC AROMATIC-HYDROCARBONS"

Sort by: Order: Results:

Now showing items 1-18 of 18
  • Baltrenaite, Edita; Baltrenas, Pranas; Bhatnagar, Amit; Vilppo, Teemu; Selenius, Mikko; Koistinen, Arto; Dahl, Mari; Penttinen, Olli-Pekka (2017)
    The environmental legislation and strict enforcement of environmental regulations are the tools effectively used for developing the market of materials for environmental protection technologies. Sustain ability criteria shift environmental engineering systems to more sustainable-material-based technologies. For carbon-based medium materials in biofiltration, this trend results in attempts to use biochar for biofiltration purposes. The paper presents the analysis of biochar properties based on the main criteria for biofiltration medium integrating the environmental quality properties of biochar, following the European Biochar Certificate guidelines. Three types of biochar produced from feedstock of highly popular and abundant types of waste are analysed. A multi component approach was applied to summarize the results. The lignocellulosic type of biochar was found to be more competitive for use as a biofiltration medium than the types of biochar with high ash or lignin content. (C) 2016 Elsevier Ltd. All rights reserved.
  • Fernandez-Llamazares Onrubia, Alvaro; Garteizgogeascoa, María; Basu, Niladri; Brondizio, Eduardo S.; Cabeza, Mar; Martínez-Alier, Joan; McElwee, Pamela; Reyes-Garcia, Victoria (2020)
    Indigenous peoples (IPs) worldwide are confronted by the increasing threat of pollution. Based on a comprehensive review of the literature (n = 686 studies), we present the current state of knowledge on: 1) the exposure and vulnerability of IPs to pollution; 2) the environmental, health, and cultural impacts of pollution upon IPs; and 3) IPs' contributions to prevent, control, limit, and abate pollution from local to global scales. Indigenous peoples experience large burdens of environmental pollution linked to the expansion of commodity frontiers and industrial development, including agricultural, mining, and extractive industries, as well as urban growth, waste dumping, and infrastructure and energy development. Nevertheless, IPs are contributing to limit pollution in different ways, including through environmental monitoring and global policy advocacy, as well as through local resistance toward polluting activities. This work adds to growing evidence of the breadth and depth of environmental injustices faced by IPs worldwide, and we conclude by highlighting the need to increase IPs' engagement in environmental decision‐making regarding pollution control. Integr Environ Assess Manag 2020;16:324–341. © 2019 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC)
  • Vari, Heli; Roslund, Marja; Oikarinen, Sami; Nurminen, Noora; Puhakka, Riikka; Parajuli, Anirudra; Grönroos, Mira; Siter, Nathan; Laitinen, Olli; Hyöty, Heikki; Rajaniemi, Juho; Rantalainen, Anna-Lea; Sinkkonen, Aki; The ADELE Research Group (2021)
    There is evidence that polycyclic aromatic hydrocarbons (PAHs) and human gut microbiota are associated with the modulation of endocrine signaling pathways. Independently, studies have found associations between air pollution, land cover and commensal microbiota. We are the first to estimate the interaction between land cover categories associated with air pollution or purification, PAH levels and endocrine signaling predicted from gut metagenome among urban and rural populations. The study participants were elderly people (65-79 years); 30 lived in rural and 32 in urban areas. Semi-Permeable Membrane devices were utilized to measure air PAH concentrations as they simulate the process of bioconcentration in the fatty tissues. Land cover categories were estimated using CORINE database and geographic information system. Functional orthologues for peroxisome proliferator-activated receptor (PPAR) pathway in endocrine system were analyzed from gut bacterial metagenome with Kyoto Encyclopaedia of Genes and Genomes. High coverage of broad-leaved and mixed forests around the homes were associated with decreased PAH levels in ambient air, while gut functional orthologues for PPAR pathway increased along with these forest types. The difference between urban and rural PAH concentrations was not notable. However, some rural measurements were higher than the urban average, which was due to the use of heavy equipment on active farms. The provision of air purification by forests might be an important determining factor in the context of endocrine disruption potential of PAHs. Particularly broad-leaved forests around homes may reduce PAH levels in ambient air and balance pollution-induced disturbances within commensal gut microbiota. (C) 2020 The Author(s). Published by Elsevier Ltd.
  • Yan, Lijuan; Penttinen, Petri; Mikkonen, Anu; Lindstrom, Kristina (2018)
    We investigated bacterial community dynamics in response to used motor oil contamination and perennial crop cultivation by 16S rRNA gene amplicon sequencing in a 4-year field study. Actinobacteria, Proteobacteria, Chloroflexi, Acidobacteria, and Gemmatimonadetes were the major bacterial phyla, and Rhodococcus was the most abundant genus. Initially, oil contamination decreased the overall bacterial diversity. Actinobacteria, Betaproteobacteria, and Gammaproteobacteria were sensitive to oil contamination, exhibiting clear succession with time. However, bacterial communities changed over time, regardless of oil contamination and crop cultivation. The abundance difference of most OTUs between oil-contaminated and non-contaminated plots remained the same in later sampling years after the initial abundance difference induced by oil spike. The abundances of three oil-favored actinobacteria (Lysinimonas, Microbacteriaceae, and Marmoricola) and one betaproteobacterium (Aquabacterium) changed in different manner over time in oil-contaminated and non-contaminated soil. We propose that these taxa are potential bio-indicators for monitoring recovery from motor oil contamination in boreal soil. The effect of crop cultivation on bacterial communities became significant only after the crops achieved stable growth, likely associated with plant material decomposition by Bacteroidetes, Armatimonadetes and Fibrobacteres.
  • Vuorinen, Pekka J.; Saulamo, Kari; Lecklin, Tiina; Rahikainen, Mika; Koivisto, Pertti; Keinänen, Marja (2017)
    Female perch (Perca fluviatilis) were sampled annually in late summer from 2006 to 2009 from the open sea of the eastern Gulf of Finland off Haapasaari island to monitor baseline biliary PAH metabolite concentrations. In addition, two coastal locations were sampled in 2008. PAH metabolite concentrations were compared between the open sea and coastal samples and between the sampling years and examined in relation to the body characteristics of perch. Of the PAH metabolites, only 1-hydroxypyrene (1 -OH pyrene) was detected at quantifiable levels in the bile of nearly all perch individuals. There were some annual differences but no temporal trend in the concentration of biliary 1-OH pyrene in perch from Haapasaari. At the coastal locations, 1-OH pyrene concentrations in the bile of perch were significantly higher than in the open sea Haapasaari area, probably due to greater contamination of the coastal sites and differences in feeding behaviour. No correlations between the body characteristics of perch and 1 -OH pyrene concentrations were detected. It is concluded that PAH metabolites in the bile of fish could be measured in the Gulf of Finland to detect oil spills in the open sea, and the cost-effective total fluorescence method could be used in such monitoring programmes. (C) 2017 Elsevier B.V. All rights reserved.
  • Omoruyi, Iyekhoetin Matthew; Ahamioje, Derek; Pohjanvirta, Raimo (2014)
  • Roslund, Marja; Rantala, Sonja; Oikarinen, Sami; Puhakka, Riikka; Hui, Nan; Parajuli, Anirudra; Laitinen, Olli-Heikki; Hyöty, Heikki; Rantalainen, Anna-Lea; Sinkkonen, Aki; The ADELE Research Group (2019)
    Polycyclic aromatic hydrocarbons (PAHs) are priority environmental pollutants that cause adverse health effects. PAHs belong to endocrine signaling disruptors to which children are sensitive to. Recent evidence suggests that PAH pollution alters the abundance of environmental bacteria that is associated with health outcomes. The alteration of environmental and commensal microbiota by PAH pollution has never been connected to endocrine signaling pathways. To estimate the risk of endocrine disruption in daycare children, we measured PAHs from soil and air of eleven urban daycare centres in Finland. We analyzed daycare yards' soil and children's gut and skin bacterial communities with 16S rRNA gene metabarcoding and used Kyoto Encyclopaedia of Genes and Genomes database to categorize endocrine signaling pathways. We also assessed the PAH hazard to children's health based on the current risk assesments. We observed associations between signaling pathways in endocrine system and gaseous PAH levels in ambient air. Peroxisome proliferator-activated receptor and adipocytokine signaling pathway decreased with higher chrysene concentration in the air. Soil PAH contamination was associated with altered Actinobacteria, Bacteoridetes and Proteobacteria communities on children's skin and in daycare yard soil. However, adjusted genera were not the same in soil and on skin, with the exception of Mycobacterium that was associated with higher PAH concentrations both in soil and on the skin. Even though fluoranhtene levels were above the current threshold values, total PAHs were below safety threshold values and based on current risk assessments there is a minor risk for child health. Our findings indicate that PAH concentrations that are considered safe may interfere with endocrine signaling by commensal microbiota and alter both environmental and commensal bacterial communities. The imbalance in human microbiota and the decrease in signaling pathways may contribute to emerging public health problems, including inflammatory disorders, obesity and diabetes. Therefore, the optimal risk assessments of PAHs and theoretically also other contaminants shaping commensal microbiota may need to take into account the possibility of the disruption of endocrine signaling pathways.
  • Hellen, Heidi; Kangas, Leena; Kousa, Anu; Vestenius, Mika; Teinila, Kimmo; Karppinen, Ari; Kukkonen, Jaakko; Niemi, Jarkko V. (2017)
    Even though emission inventories indicate that wood combustion is a major source of polycyclic aromatic hydrocarbons (PAHs), estimating its impacts on PAH concentration in ambient air remains challenging. In this study the effect of local small-scale wood combustion on the benzo[a] pyrene (BaP) concentrations in ambient air in the Helsinki metropolitan area in Finland is evaluated, using ambient air measurements, emission estimates, and dispersion modeling. The measurements were conducted at 12 different locations during the period from 2007 to 2015. The spatial distributions of annual average BaP concentrations originating from wood combustion were predicted for four of those years: 2008, 2011, 2013, and 2014. According to both the measurements and the dispersion modeling, the European Union target value for the annual average BaP concentrations (1 ngm(-3) ) was clearly exceeded in certain suburban detached-house areas. However, in most of the other urban areas, including the center of Helsinki, the concentrations were below the target value. The measured BaP concentrations highly correlated with the measured levoglucosan concentrations in the suburban detached-house areas. In street canyons, the measured concentrations of BaP were at the same level as those in the urban background, clearly lower than those in suburban detached-house areas. The predicted annual average concentrations matched with the measured concentrations fairly well. Both the measurements and the modeling clearly indicated that wood combustion was the main local source of ambient air BaP in the Helsinki metropolitan area.
  • Roslund, Marja I.; Grönroos, Mira; Rantalainen, Anna-Lea; Jumpponen, Ari; Romantschuk, Martin; Parajuli, Anirudra; Hyöty, Heikki; Laitinen, Olli; Sinkkone, Aki (2018)
    Background. Polycyclic aromatic hydrocarbons (PAHs) accumulate in urban soils, and PAH contamination can change soil microbial community composition. Environmental microbiota is associated with human commensal microbiota, immune system and health. Therefore, studies investigating the degradation of PAHs, and the consequences of soil pollution on microbial communities in urban landscaping materials, are crucial. Methods. Four landscaping materials (organic matter 1, 2, 13 and 56%) were contaminated with PAHs commonly found at urban sites (phenanthrene, fluoranthene, pyrene, chrysene and benzo(b)fluoranthene) in PAH concentrations that reflect urban soils in Finland (2.4 mu g g(-1) soil dry weight). PAHs were analyzed initially and after 2, 4, 8 and 12 weeks by gas chromatography-mass spectrometry. Half-lives of PAHs were determined based on 12-weeks degradation. Bacterial communities were analyzed at 1 and 12 weeks after contamination using Illumina MiSeq 16S rRNA gene metabarcoding. Results. Half-lives ranged from 1.5 to 4.4 weeks for PAHs with relatively low molecular weights (phenanthrene, fluoranthene and pyrene) in landscaping materials containing 1-2% organic matter. In contrast, in materials containing 13% and 56% organic matter, the half-lives ranged from 2.5 to 52 weeks. Shorter half-lives of phenanthrene and fluoranthene were thus associated with low organic matter content. The half-life of pyrene was inversely related to the relative abundance of Beta-, Delta- and Gammaproteobacteria, and diversity of Bacteroidetes and Betaprotebacteria. Compounds with higher molecular weights followed compound-specific patterns. Benzo(b)fluoranthene was resistant to degradation and half-life of chrysene was shorter when the relative abundance of Betaproteobacteria was high. Temporal microbiota changes involved increase in the relative abundance of Deltaproteobacteria and decrease in genera Flavobacterium and Rhodanobacter. Exposure to PAHs seems to adjust microbial community composition, particularly within class Beta- and Deltaproteobacteria. Conclusions. In this study, PAH degradation depended on the organic matter content and bacterial community composition of landscaping materials. Contamination seems to alter bacterial community composition in landscaping materials depending on material type. This alteration includes changes in bacterial phyla associated with human health and immune system. This may open new possibilities for managing urban environments by careful selection of landscaping materials, to benefit health and wellbeing.
  • Kohl, Lukas; Meng, Meng; de Vera, Joan; Bergquist, Bridget; Cooke, Colin A.; Hustings, Sarah; Jackson, Brian; Chow, Chung-Wai; Chan, Arthur W. H. (2019)
    Wildfires are increasing in prevalence and intensity and emit large quantities of persistent organic and inorganic pollutants. Recent fires have caused elevated concerns that residual pollutants in indoor environments pose a long‐term health hazard to residents, however, to date no studies have investigated how long fire‐derived pollutants are retained in indoor environments. We quantified polycyclic aromatic hydrocarbons (PAHs) and toxic trace elements in ground ashes from the 2016 wildland‐urban interface fires in Fort McMurray (Alberta, Canada) and in house dust from 64 homes. We document residual arsenic pollution from local building fires, but found no evidence that forest fire ash remained in households 14 months after the fire. Overall, house dust pollutant concentrations were equal or lower than in other locations unaffected by wildfires. Given the current and future concerns over wildfire impacts, this study provides importance evidence on the degree of their long‐term effects on the residential environment.
  • Ran, Li; Yassami, Shiva; Kiviniemi, Eero Antero; Qiao, Wanjin; Takala, Timo; Saris, Per (2021)
    In this work, we studied the control of Listeria monocytogenes in raw chicken meat by marinating breast strips with beer containing bacteriocin leucocin C. An URA3 auxotrophic strain of probiotic yeast Saccharomyces boulardii CNCM I-745 was used as a host to express the gene lecC encoding the bacteriocin leucocin C. Secretion of leucocin C was confirmed by the inhibition against L. monocytogenes using agar well diffusion assay. The new auxotrophic host secreted leucocin C better than previously constructed wild-type strain, and therefore it was used to brew anti-listerial beer. The beer was shown to maintain its anti-listerial activity for 38 days. Chicken breast strips spiked with L. monocytogenes were then marinated with the anti-listerial beer for overnight, and the killing of L. monocytogenes was analysed. Marination with beer containing leucocin C reduced the viable cells of L. monocytogenes by about 1.6 log from (2.2 +/- 0.6) x 10(7) CFU/g on day 24, and 2.2 log from (1.8 +/- 0.3) x 10(5) CFU/g on day 38. In conclusion, the URA3 auxotrophic S. boulardii efficiently secreted the bacteriocin leucocin C, and brewing beer with this strain resulted in anti-listerial beer. Such beer is effective as a marinade in reducing the Listeria risk in chicken breast strips.
  • Sidorova, Yulia A.; Perepechaeva, Maria L.; Pivovarova, Elena N.; Markel, Arkady L.; Lyakhovich, Vyacheslav V.; Grishanova, Alevtina Y. (2016)
    Oxidative reactions that are catalyzed by cytochromes P450 1A (CYP1A) lead to formation of carcinogenic derivatives of arylamines and polycyclic aromatic hydrocarbons (PAHs), such as the widespread environmental pollutant benzo(a) pyrene (BP). These compounds upregulate CYP1A at the transcriptional level via an arylhydrocarbon receptor (AhR)-dependent signaling pathway. Because of the involvement of AhR-dependent genes in chemically induced carcinogenesis, suppression of this signaling pathway could prevent tumor formation and/or progression. Here we show that menadione (a water-soluble analog of vitamin K-3) inhibits BP-induced expression and enzymatic activity of both CYP1A1 and CYP1A2 in vivo (in the rat liver) and BP-induced activity of CYP1A1 in vitro. Coadministration of BP and menadione reduced DNA-binding activity of AhR and increased DNA-binding activity of transcription factors Oct-1 and CCAAT/enhancer binding protein (C/EBP), which are known to be involved in negative regulation of AhR-dependent genes, in vivo. Expression of another factor involved in downregulation of CYP1A-pAhR repressor (AhRR)-was lower in the liver of the rats treated with BP and menadione, indicating that the inhibitory effect of menadione on CYP1A is not mediated by this protein. Furthermore, menadione was well tolerated by the animals: no signs of acute toxicity were detected by visual examination or by assessment of weight gain dynamics or liver function. Taken together, our results suggest that menadione can be used in further studies on animal models of chemically induced carcinogenesis because menadione may suppress tumor formation and possibly progression.
  • Bianco, Angelica; Passananti, Monica; Brigante, Marcello; Mailhot, Gilles (2020)
    This review paper describes briefly the cloud aqueous phase composition and deeply its reactivity in the dark and mainly under solar radiation. The role of the main oxidants (hydrogen peroxide, nitrate radical, and hydroxyl radical) is presented with a focus on the hydroxyl radical, which drives the oxidation capacity during the day. Its sources in the aqueous phase, mainly through photochemical mechanisms with H2O2, iron complexes, or nitrate/nitrite ions, are presented in detail. The formation rate of hydroxyl radical and its steady state concentration evaluated by different authors are listed and compared. Finally, a paragraph is also dedicated to the sinks and the reactivity of the HO center dot radical with the main compounds found in the cloud aqueous phase. This review presents an assessment of the reactivity in the cloud aqueous phase and shows the significant potential impact that this medium can have on the chemistry of the atmosphere and more generally on the climate.
  • Anasonye, Festus; Tammeorg, Priit; Parshintsev, Evgeny; Riekkola, Marja-Liisa; Tuomela, Marja Tuulikki (2018)
    The use of biochar (BC) has been suggested for remediation of contaminated soils. This study aims to investigate the role of microorganisms in sorption of PAH to BC-amended soils. Fungi, especially the wood and litter-degrading fungi, have shown the ability for humification and to degrade recalcitrant molecules, and are thus suitable model organisms. Haplic Arenosol with high organic matter content was chosen to highlight the importance of soil organic matter (SOM) in PAH sorption, possibly to form non-extractable residue. Basidiomycetous fungi Agrocybe praecox and Phanerochaete velutina grown on pine bark were inoculated in organic matter (OM)-rich Haplic Arenosol and OM-poor sandy loam with either BC or chemically activated BC (ABC) and 14C-labelled pyrene for 60 days. Fungi did not mineralize pyrene, but increased sorption up to 47–56% in BC-amended Haplic Arenosol in comparison with controls (13–25%) without a fungus irrespective of the presence of an adsorbent. In OM-poor sandy loam, only 9–12% of pyrene was sorbed to amended soil in the presence of fungus and adsorbent. The results suggest that BC and fungal amendment increased sorption of pyrene, especially to Haplic Arenosol more than by either BC or fungi alone.
  • Yan, Lijuan; Hui, Nan; Simpanen, Suvi; Tudeer, Laura; Romantschuk, Martin (2020)
    The brackish Baltic Sea is under diesel oil pollution risk due to heavy ship traffic. The situation is exasperated by densely distributed marinas and a vigorous although seasonal recreational boating. The seasonality and physical environmental variations hamper the monitoring of microbial communities in response to diesel oil spills. Hence, an 8-week simulation experiment was established in metal basins (containing 265 L sea water and 18 kg quartz sand or natural shore sand as the littoral sediment) to study the effect of accidental diesel oil spills on microbial communities. Our results demonstrated that microbial communities in the surface water responded to diesel oil contamination, whereas those in the littoral sediment did not, indicating that diesel oil degradation mainly happened in the water. Diesel oil decreased the abundance of bacteria and fungi, but increased bacterial diversity in the water. Time was the predominant driver of microbial succession, attributable to the adaption strategies of microbes. Bacteria were more sensitive to diesel oil contamination than fungi and archaea. Diesel oil increased relative abundances of bacterial phyla, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Flavobacteriia and Cytophagia, and fungal phylum Ascomycota in the surface water. Overall, this study improves the understanding of the immediate ecological impact of accidental diesel oil contamination, providing insights into risk management at the coastal area.
  • Parajuli, Anirudra; Gronroos, Mira; Kauppi, Sari; Plociniczak, Tomasz; Roslund, Marja I.; Galitskaya, Polina; Laitinen, Olli H.; Hyöty, Heikki; Jumpponen, Ari; Strömmer, Rauni; Romantschuk, Martin; Hui, Nan; Sinkkonen, Aki (2017)
    Long-term exposure to polyaromatic hydrocarbons (PAHs) has been connected to chronic human health disorders. It is also well-known that i) PAH contamination alters soil bacterial communities, ii) human microbiome is associated with environmental microbiome, and iii) alteration in the abundance of members in several bacterial phyla is associated with adverse or beneficial human health effects. We hypothesized that soil pollution by PAHs altered soil bacterial communities that had known associations with human health. The rationale behind our study was to increase understanding and potentially facilitate reconsidering factors that lead to health disorders in areas characterized by PAH contamination. Large containers filled with either spruce forest soil, pine forest soil, peat, or glacial sand were left to incubate or contaminated with creosote. Biological degradation of PAHs was monitored using GC-MS, and the bacterial community composition was analyzed using 454 pyrosequencing. Proteobacteria had higher and Actinobacteria and Bacteroidetes had lower relative abundance in creosote contaminated soils than in non-contaminated soils. Earlier studies have demonstrated that an increase in the abundance of Proteobacteria and decreased abundance of the phyla Actinobacteria and Bacteroidetes are particularly associated with adverse health outcomes and immunological disorders. Therefore, we propose that pollution-induced shifts in natural soil bacterial community, like in PAH-polluted areas, can contribute to the prevalence of chronic diseases. We encourage studies that simultaneously address the classic "adverse toxin effect" paradigm and our novel "altered environmental microbiome" hypothesis.
  • Todd, Peter A.; Heery, Eliza C.; Loke, Lynette H. L.; Thurstan, Ruth H.; Kotze, D. Johan; Swan, Christopher (2019)
    Human population density within 100 km of the sea is approximately three times higher than the global average. People in this zone are concentrated in coastal cities that are hubs for transport and trade - which transform the marine environment. Here, we review the impacts of three interacting drivers of marine urbanization (resource exploitation, pollution pathways and ocean sprawl) and discuss key characteristics that are symptomatic of urban marine ecosystems. Current evidence suggests these systems comprise spatially heterogeneous mosaics with respect to artificial structures, pollutants and community composition, while also undergoing biotic homogenization over time. Urban marine ecosystem dynamics are often influenced by several commonly observed patterns and processes, including the loss of foundation species, changes in biodiversity and productivity, and the establishment of ruderal species, synanthropes and novel assemblages. We discuss potential urban acclimatization and adaptation among marine taxa, interactive effects of climate change and marine urbanization, and ecological engineering strategies for enhancing urban marine ecosystems. By assimilating research findings across disparate disciplines, we aim to build the groundwork for urban marine ecology - a nascent field; we also discuss research challenges and future directions for this new field as it advances and matures. Ultimately, all sides of coastal city design: architecture, urban planning and civil and municipal engineering, will need to prioritize the marine environment if negative effects of urbanization are to be minimized. In particular, planning strategies that account for the interactive effects of urban drivers and accommodate complex system dynamics could enhance the ecological and human functions of future urban marine ecosystems.
  • Honkonen, Olga; Rantalainen, Anna-Lea (2016)
    The aim of this study was to evaluate the sources, transport and distribution of hydrophobic organic contaminants produced in an urban area. Passive sampling devices (PSDs) were employed in the storm-water drainage of the city of Lahti, in an adjacent boreal lake (Vesijarvi) and along its shore. Samples were analysed for 16 polycyclic aromatic hydrocarbons (PAHs) and 28 polychlorinated biphenyls (PCBs) with a gas chromatograph-mass spectrometer. Concentrations of contaminants were elevated in the stormwater drainage and in the vicinity of the stormwater outlets in Vesijarvi, but declined as a function of distance from the shore. Atmospheric PAH concentrations were significantly higher in the autumn than in the summer. Petrogenic PAHs contributed significantly to stormwater contamination, while pyrogenic pollutants mainly appeared to be carried to Vesijarvi by atmospheric transport.