Browsing by Subject "POWDERY MILDEW"

Sort by: Order: Results:

Now showing items 1-9 of 9
  • Rosa, Elena; Woestmann, Luisa; Biere, Arjen; Saastamoinen, Marjo (2018)
    Host plant chemical composition critically shapes the performance of insect herbivores feeding on them. Some insects have become specialized on plant secondary metabolites, and even use them to their own advantage such as defense against predators. However, infection by plant pathogens can seriously alter the interaction between herbivores and their host plants. We tested whether the effects of the plant secondary metabolites, iridoid glycosides (IGs), on the performance and immune response of an insect herbivore are modulated by a plant pathogen. We used the IG-specialized Glanville fritillary butterfly Melitaea cinxia, its host plant Plantago lanceolata, and the naturally occurring plant pathogen, powdery mildew Podosphaera plantaginis, as model system. Pre-diapause larvae were fed on P. lanceolata host plants selected to contain either high or low IGs, in the presence or absence of powdery mildew. Larval performance was measured by growth rate, survival until diapause, and by investment in immunity. We assessed immunity after a bacterial challenge in terms of phenoloxidase (PO) activity and the expression of seven pre-selected insect immune genes (qPCR). We found that the beneficial effects of constitutive leaf IGs, that improved larval growth, were significantly reduced by mildew infection. Moreover, mildew presence downregulated one component of larval immune response (PO activity), suggesting a physiological cost of investment in immunity under suboptimal conditions. Yet, feeding on mildew-infected leaves caused an upregulation of two immune genes, lysozyme and prophenoloxidase. Our findings indicate that a plant pathogen can significantly modulate the effects of secondary metabolites on the growth of an insect herbivore. Furthermore, we show that a plant pathogen can induce contrasting effects on insect immune function. We suspect that the activation of the immune system toward a plant pathogen infection may be maladaptive, but the actual infectivity on the larvae should be tested.
  • Cui, Fuqiang; Wu, Hongpo; Safronov, Omid; Zhang, Panpan; Kumar, Rajeev; Kollist, Hannes; Salojärvi, Jarkko Tapani; Panstruga, Ralph; Overmyer, Kirk Loren (2018)
    The atmospheric pollutant ozone (O-3) is a strong oxidant that causes extracellular reactive oxygen species (ROS) formation, has significant ecological relevance, and is used here as a non-invasive ROS inducer to study plant signalling. Previous genetic screens identified several mutants exhibiting enhanced O-3 sensitivity, but few with enhanced tolerance. We found that loss-of-function mutants in Arabidopsis MLO2, a gene implicated in susceptibility to powdery mildew disease, exhibit enhanced dose-dependent tolerance to O-3 and extracellular ROS, but a normal response to intracellular ROS. This phenotype is increased in a mlo2 mlo6 mlo12 triple mutant, reminiscent of the genetic redundancy of MLO genes in powdery mildew resistance. Stomatal assays revealed that enhanced O-3 tolerance in mlo2 mutants is not caused by altered stomatal conductance. We explored modulation of the mlo2-associated O-3 tolerance, powdery mildew resistance, and early senescence phenotypes by genetic epistasis analysis, involving mutants with known effects on ROS sensitivity or antifungal defence. Mining of publicly accessible microarray data suggests that these MLO proteins regulate accumulation of abiotic stress response transcripts, and transcript accumulation of MLO2 itself is O-3 responsive. In summary, our data reveal MLO2 as a novel negative regulator in plant ROS responses, which links biotic and abiotic stress response pathways.
  • Tack, Ayco J. M.; Laine, Anna-Liisa (2014)
    •While recent studies have elucidated many of the factors driving parasite dynamics during the growing season, the ecological and evolutionary dynamics during the off-season (i.e. the period between growing seasons) remain largely unexplored. •We combine large-scale surveys and detailed experiments to investigate the overwintering success of the specialist plant pathogen Podosphaera plantaginis on its patchily distributed host plant Plantago lanceolata on the Åland Islands. •Twelve years of epidemiological data establish the off-season as a crucial stage in pathogen metapopulation dynamics, with approximately forty percent of the populations going extinct during the off-season. At the end of the growing season, we observed environmentally-mediated variation in the production of resting structures, with major consequences for spring infection at spatial scales ranging from single individuals to populations within a metapopulation. Reciprocal transplant experiments further demonstrated that pathogen population of origin and overwintering site jointly shaped infection intensity in spring, with a weak signal of parasite adaptation to the local off-season environment. •We conclude that environmentally-mediated changes in the distribution and evolution of parasites during the off-season are crucial for our understanding of host-parasite dynamics, with applied implications for combating parasites and diseases in agriculture, wildlife and human disease systems.
  • Parratt, Steven R.; Laine, Anna-Liisa (2018)
    1. The relative importance of bottom-up versus top-down control of population dynamics has been the focus of much debate. In infectious disease biology, research is typically focused on the bottom-up process of host resistance, wherein the direction of control flows from the lower to the higher trophic level to impact on pathogen population size and epidemiology. However, the importance of top-down control by a pathogen's natural enemies has been mostly overlooked. 2. Here, we explore the effects of, and interaction between, host genotype (i.e., genetic susceptibility to pathogen infection) and infection by a hyperparasitic fungus, Ampelomyces spp., on the establishment and early epidemic growth and transmission of a powdery mildew plant pathogen (Podosphaera plantaginis). We used a semi-natural field experiment to contrast the impacts of hyperparasite infection, host-plant resistance and spatial structure to reveal the key factors that determine pathogen spread. We then used a laboratory-based inoculation approach to test whether the field experiment results hold across multiple pathogen-host genetic combinations and to explore hyperparasite effects on the pathogen's later life-history stages. 3. We found that hyperparasite infection had a negligible effect on within-host infection development and between-host spread of the pathogen during the onset of epidemics. In contrast, host-plant resistance was the major determinant of whether plants became infected, and host genotype and proximity to an infection source determined infection severity. 4. Our laboratory study showed that, while the interaction between host and pathogen genotypes was the key determinant of infection outcome, hyperparasitism did, on average, reduce the severity of infection. Moreover, hyperparasite infection negatively influenced the production of the pathogen's overwintering structures. 5. Synthesis and applications. Our results suggest that bottom-up host resistance affects pathogen spread, but top-down control of powdery mildew pathogens is likely more effective against later life-history stages. Further, while hyperparasitism in this system can reduce early pathogen growth under stable laboratory conditions, this effect is not detectable in a semi-natural environment. Considering the effects of hyperparasites at multiple points in pathogen's life history will be important when considering hyperparasite-derived biocontrol measures in other natural and agricultural systems.
  • Pour-Aboughadareh, Alireza; Kianersi, Farzad; Poczai, Péter; Moradkhani, Hoda (2021)
    Among cereal crops, wheat has been identified as a major source for human food consumption. Wheat breeders require access to new genetic diversity resources to satisfy the demands of a growing human population for more food with a high quality that can be produced in variable environmental conditions. The close relatives of domesticated wheats represent an ideal gene pool for the use of breeders. The genera Aegilops and Triticum are known as the main gene pool of domesticated wheat, including numerous species with different and interesting genomic constitutions. According to the literature, each wild relative harbors useful alleles which can induce resistance to various environmental stresses. Furthermore, progress in genetic and biotechnology sciences has provided accurate information regarding the phylogenetic relationships among species, which consequently opened avenues to reconsider the potential of each wild relative and to provide a context for how we can employ them in future breeding programs. In the present review, we have sought to represent the level of genetic diversity among the wild relatives of wheat, as well as the breeding potential of each wild species that can be used in wheat-breeding programs.
  • Vaumourin, Elise; Laine, Anna-Liisa (2018)
    Understanding processes maintaining variation in pathogen life-history traits is a key challenge in disease biology, and of importance for predicting when and where risks of disease emergence are highest. Pathogens are expected to encounter tremendous levels of variation in their environment - both abiotic and biotic - and this variation may promote maintenance of variation in pathogen populations through space and time. Here, we measure life-history traits of an obligate fungal pathogen at both asexual and sexual stages under both single infection and coinfection along a temperature gradient. We find that temperature had a significant effect on all measured life-history traits while coinfection only had a significant effect on the number of sexual resting structures produced. The effect of temperature on life-history traits was both direct as well as mediated through a genotype-by-temperature interaction. We conclude that pathogen life-history traits vary in their sensitivity to abiotic and biotic variation in the environment.
  • van Dijk, Laura J. A.; Moreira, Xoaquin; Barr, Anna E.; Abdala-Roberts, Luis; Castagneyrol, Bastien; Faticov, Maria; Hardwick, Bess; ten Hoopen, Jan P. J. G.; de la Mata, Raul; Pires, Ricardo Matheus; Roslin, Tomas; Schigel, Dmitry S.; Timmermans, Bart G. H.; Tack, Ayco J. M. (2022)
    The world is rapidly urbanizing, thereby transforming natural landscapes and changing the abundance and distribution of organisms. However, insights into the effects of urbanization on species interactions, and plant-pathogen interactions in particular, are lacking. We investigated the effects of urbanization on powdery mildew infection on Quercus robur at continental and within-city scales. At the continental scale, we compared infection levels between urban and rural areas of different-sized cities in Europe, and investigated whether plant traits, climatic variables and CO2 emissions mediated the effect of urbanization on infection levels. Within one large city (Stockholm, Sweden), we further explored whether local habitat features and spatial connectivity influenced infection levels during multiple years. At the continental scale, infection severity was consistently higher on trees in urban than rural areas, with some indication that temperature mediated this effect. Within Stockholm city, temperature had no effect, while local accumulation of leaf litter negatively affected powdery mildew incidence in one out of three years, and more connected trees had lower infection levels. This study is the first to describe the effects of urbanization on plant-pathogen interactions both within and among cities, and to uncover the potential mechanisms behind the observed patterns at each scale.
  • Numminen, Elina; Vaumourin, Elise; Parratt, Steven R.; Poulin, Lucie; Laine, Anna-Liisa (2019)
    BackgroundUnderstanding the mechanisms by which diversity is maintained in pathogen populations is critical for epidemiological predictions. Life-history trade-offs have been proposed as a hypothesis for explaining long-term maintenance of variation in pathogen populations, yet the empirical evidence supporting trade-offs has remained mixed. This is in part due to the challenges of documenting successive pathogen life-history stages in many pathosystems. Moreover, little is understood of the role of natural enemies of pathogens on their life-history evolution.ResultsWe characterize life-history-trait variation and possible trade-offs in fungal pathogen Podosphaera plantaginis infecting the host plant Plantago lanceolata. We measured the timing of both asexual and sexual stages, as well as resistance to a hyperparasite of seven pathogen strains that vary in their prevalence in nature. We find significant variation among the strains in their life-history traits that constitute the infection cycle, but no evidence for trade-offs among pathogen development stages, apart from fast pathogen growth coninciding with fast hyperparasite growth. Also, the seemingly least fit pathogen strain was the most prevalent in the nature.ConclusionsWe conclude that in the nature environmental variation, and interactions with the antagonists of pathogens themselves may maintain variation in pathogen populations.
  • Geisslitz, Sabrina; Shewry, Peter; Brouns, Fred; America, Antoine H. P.; Caio, Giacomo Pietro Ismaele; Daly, Matthew; D'Amico, Stefano; De Giorgio, Roberto; Gilissen, Luud; Grausgruber, Heinrich; Huang, Xin; Jonkers, Daisy; Keszthelyi, Daniel; Larre, Colette; Masci, Stefania; Mills, Clare; Moller, Marie Sofie; Sorrells, Mark E.; Svensson, Birte; Zevallos, Victor F.; Weegels, Peter Louis (2021)
    Amylase/trypsin-inhibitors (ATIs) comprise about 2-4% of the total wheat grain proteins and may contribute to natural defense against pests and pathogens. However, they are currently among the most widely studied wheat components because of their proposed role in adverse reactions to wheat consumption in humans. ATIs have long been known to contribute to IgE-mediated allergy (notably Bakers' asthma), but interest has increased since 2012 when they were shown to be able to trigger the innate immune system, with attention focused on their role in coeliac disease which affects about 1% of the population and, more recently, in non-coeliac wheat sensitivity which may affect up to 10% of the population. This has led to studies of their structure, inhibitory properties, genetics, control of expression, behavior during processing, effects on human adverse reactions to wheat and, most recently, strategies to modify their expression in the plant using gene editing. We therefore present an integrated account of this range of research, identifying inconsistencies, and gaps in our knowledge and identifying future research needs. Note This paper is the outcome of an invited international ATI expert meeting held in Amsterdam, February 3-5 2020