Browsing by Subject "PPAR-ALPHA"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Mardinoglu, Adil; Wu, Hao; Bjornson, Elias; Zhang, Cheng; Hakkarainen, Antti; Räsänen, Sari M.; Lee, Sunjae; Mancina, Rosellina M.; Bergentall, Mattias; Pietiläinen, Kirsi H.; Söderlund, Sanni; Matikainen, Niina; Stahlman, Marcus; Bergh, Per-Olof; Adiels, Martin; Piening, Brian D.; Graner, Marit; Lundbom, Nina; Williams, Kevin J.; Romeo, Stefano; Nielsen, Jens; Snyder, Michael; Uhlen, Mathias; Bergstrom, Goran; Perkins, Rosie; Marschall, Hanns-Ulrich; Backhed, Fredrik; Taskinen, Marja-Riitta; Boren, Jan (2018)
    A carbohydrate-restricted diet is a widely recommended intervention for non-alcoholic fatty liver disease (NAFLD), but a systematic perspective on the multiple benefits of this diet is lacking. Here, we performed a short-term intervention with an isocaloric low-carbohydrate diet with increased protein content in obese subjects with NAFLD and characterized the resulting alterations in metabolism and the gut microbiota using a multi-omics approach. We observed rapid and dramatic reductions of liver fat and other cardiometabolic risk factors paralleled by (1) marked decreases in hepatic de novo lipogenesis; (2) large increases in serum beta-hydroxybutyrate concentrations, reflecting increased mitochondrial beta-oxidation; and (3) rapid increases in folate-producing Streptococcus and serum folate concentrations. Liver transcriptomic analysis on biopsy samples from a second cohort revealed downregulation of the fatty acid synthesis pathway and upregulation of folate-mediated one-carbon metabolism and fatty acid oxidation pathways. Our results highlight the potential of exploring diet-microbiota interactions for treating NAFLD.
  • Forsström, Saara; Jackson, Christopher B.; Carroll, Christopher J.; Kuronen, Mervi; Pirinen, Eija; Pradhan, Swagat; Marmyleva, Anastasiia; Auranen, Mari; Kleine, Iida-Marja; Khan, Nahid A.; Roivainen, Anne; Marjamäki, Paivi; Liljenbäck, Heidi; Wang, Liya; Battersby, Brendan J.; Richter, Uwe; Velagapudi, Vidya; Nikkanen, Joni; Euro, Liliya; Suomalainen, Anu (2019)
    Mitochondrial dysfunction elicits stress responses that safeguard cellular homeostasis against metabolic insults. Mitochondrial integrated stress response (ISRmt) is a major response to mitochondrial (mt)DNA expression stress (mtDNA maintenance, translation defects), but the knowledge of dynamics or interdependence of components is lacking. We report that in mitochondrial myopathy, ISRmt progresses in temporal stages and development from early to chronic and is regulated by autocrine and endocrine effects of FGF21, a metabolic hormone with pleiotropic effects. Initial disease signs induce transcriptional ISRmt (ATF5, mitochondria) one-carbon cycle, FGF21, and GDF15). The local progression to 2nd metabolic ISRmt stage (ATF3, ATF4, glucose uptake, serine biosynthesis, and transsulfuration) is FGF21 dependent. Mitochondria! unfolded protein response marks the 3rd ISRmt stage of failing tissue. Systemically, FGF21 drives weight loss and glucose preference, and modifies metabolism and respiratory chain deficiency in a specific hippocampal brain region. Our evidence indicates that FGF21 is a local and systemic messenger of mtDNA stress in mice and humans with mitochondrial disease.