Browsing by Subject "PPB"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • The ALICE collaboration; Acharya, S.; Brücken, E. J.; Chang, B.; Hilden, T. E.; Kim, D. J.; Litichevskyi, V.; Mieskolainen, M. M.; Orava, R.; Parkkila, J. E.; Rak, J.; Räsänen, S. S.; Saarinen, S.; Slupecki, M.; Snellman, T. W.; Trzaska, W. H.; Vargyas, M.; Viinikainen, J. (2019)
    Angular conclations between heavy-flavor decay electrons and charged particles at midrapidity (vertical bar eta vertical bar < 0.8) are measured in p-Pb collisions at root s(NN) = 5.02 TeV. The analysis is carried out for the 0%-20% (high) and 60%-100% (low) multiplicity ranges. The jet contribution in the correlation distribution from high-multiplicity events is removed by subtracting the distribution from low-multiplicity events. An azimuthal modulation remains after removing the jet contribution, similar to previous observations in two-particle angular correlation measurements for light-flavor hadrons. A Fourier decomposition of the modulation results in a positive second-order coefficient (nu(2)) for heavy-flavor decay electrons in the transverse momentum interval 1.5 < p(T) < 4 GeV/c in high-multiplicity events, with a significance larger than 5 sigma. The results are compared with those of charged particles at midrapidity and those of inclusive muons at forward rapidity. The nu(2) measurement of open heavy-flavor particles at midrapidity in small collision systems could provide crucial information to help interpret the anisotropies observed in such systems.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2018)
    The elliptic azimuthal anisotropy coefficient (upsilon(2)) is measured for charm (D-0) and strange (K-S(0), Lambda, Xi(-), and Omega(-)) hadrons, using a data sample of p + Pb collisions collected by the CMS experiment, at a nucleonnucleon center-of- mass energy of root(NN)-N-s = 8.16 TeV. A significant positive upsilon(2) signal from long- range azimuthal correlations is observed for all particle species in high- multiplicity p + Pb collisions. The measurement represents the first observation of possible long-range collectivity for open heavy flavor hadrons in small systems. The results suggest that charm quarks have a smaller upsilon(2) than the lighter quarks, probably reflecting a weaker collective behavior. This effect is not seen in the larger PbPb collision system at root(NN)-N-s = 5.02 TeV, also presented.
  • Adam, J.; Brucken, E. J.; Chang, B.; Kim, D. J.; Mieskolainen, M. M.; Orava, R.; Rak, J.; Räsänen, S. S.; Saarinen, S.; Slupecki, M.; Snellman, T. W.; Trzaska, W. H.; Vargyas, M.; Viinikainen, J.; The ALICE collaboration (2017)
    At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark-gluon plasma (QGP)(1). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed(2-6). Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions(7), is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions(8,9), but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p-Pb collision results(10,11), indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed.
  • Demirci, Sami Petteri; Lappi, Tuomas; Schlichting, S. (2021)
    We calculate eccentricities in high energy proton-nucleus collisions, by calculating correlation functions of the energy density field of the glasma immediately after the collision event at proper time tau = 0(+). We separately consider the effects of color charge and geometrical hot spot fluctuations, analytically performing the averages over both in a dilute-dense limit. We show that geometric fluctuations of hot spots inside the proton are the dominant source of eccentricity whereas color charge fluctuations only give a negligible correction. The size and number of hot spots are the most important parameters characterizing the eccentricities.