Browsing by Subject "PREDICTIONS"

Sort by: Order: Results:

Now showing items 1-15 of 15
  • Turc, L.; Fontaine, D.; Savoini, P.; Hietala, H.; Kilpua, E. K. J. (2013)
  • Woolley, Skipton; Bax, Nicolas; Currie, Jock; Dunn, Daniel; Hansen, Cecilie; Hill, Nicole; O'Hara, Timothy; Ovaskainen, Otso; Sayre, Roger; Vanhatalo, Jarno; Dunstan, Piers (2020)
    Bioregions are important tools for understanding and managing natural resources. Bioregions should describe locations of relatively homogenous assemblages of species occur, enabling managers to better regulate activities that might affect these assemblages. Many existing bioregionalization approaches, which rely on expert-derived, Delphic comparisons or environmental surrogates, do not explicitly include observed biological data in such analyses. We highlight that, for bioregionalizations to be useful and reliable for systems scientists and managers, the bioregionalizations need to be based on biological data; to include an easily understood assessment of uncertainty, preferably in a spatial format matching the bioregions; and to be scientifically transparent and reproducible. Statistical models provide a scientifically robust, transparent, and interpretable approach for ensuring that bioregions are formed on the basis of observed biological and physical data. Using statistically derived bioregions provides a repeatable framework for the spatial representation of biodiversity at multiple spatial scales. This results in better-informed management decisions and biodiversity conservation outcomes.
  • Wessely, Johannes; Gattringer, Andreas; Guillaume, Frédéric; Hulber, Karl; Klonner, Gunther; Moser, Dietmar; Dullinger, Stefan (2022)
    The authors incorporate intraspecific variation into a dynamic range model to predict the consequences of twenty-first century warming on six European alpine plants. As well as overall range loss, their model predicts a decrease in the frequency of warm-adapted haplotypes in five out of six species. Modelling of climate-driven range shifts commonly treats species as ecologically homogeneous units. However, many species show intraspecific variation of climatic niches and theory predicts that such variation may lead to counterintuitive eco-evolutionary dynamics. Here, we incorporate assumed intraspecific niche variation into a dynamic range model and explore possible consequences for six high-mountain plant species of the European Alps under scenarios of twenty-first century climate warming. At the species level, the results indicate massive range loss independent of intraspecific variation. At the intraspecific level, the model predicts a decrease in the frequency of warm-adapted haplotypes in five species. The latter effect is probably driven by a combination of leading-edge colonization and priority effects within the species' elevational range and was weakest when leading-edge expansion was constrained by mountain topography The resulting maladaptation may additionally increase the risk that alpine plants face from shrinkage of their ranges in a warming climate.
  • Lehtinen, Aki (2018)
    Derivational robustness may increase the degree to which various pieces of evidence indirectly confirm a robust result. There are two ways in which this increase may come about. First, if one can show that a result is robust, and that the various individual models used to derive it also have other confirmed results, these other results may indirectly confirm the robust result. Confirmation derives from the fact that data not known to bear on a result are shown to be relevant when it is shown to be robust. Second, robustness may increase the degree to which the robust result is indirectly confirmed if it increases the weight with which existing evidence indirectly confirms it. This may happen when it strengthens the connection between the core and the robust result by showing that auxiliaries are not responsible for the result.
  • The ALICE collaboration; Acharya, S.; Brücken, E. J.; Chang, B.; Hilden, T. E.; Kim, D. J.; Litichevskyi, V.; Mieskolainen, M. M.; Orava, R.; Parkkila, J. E.; Rak, J.; Räsänen, S. S.; Saarinen, S.; Slupecki, M.; Snellman, T. W.; Trzaska, W. H.; Vargyas, M.; Viinikainen, J. (2019)
    Measurements of inclusive and direct photon production at midrapidity in pp collisions at root s = 2.76 and 8 TeV are presented by the ALICE experiment at the LHC. The results are reported in transverse momentum ranges of 0.4 < p(T) < 10 GeV/c and 0.3 < p(T) < 16 GeV/c, respectively. Photons are detected with the electromagnetic calorimeter (EMCal) and via reconstruction of e(+) e(-) pairs from conversions in the ALICE detector material using the central tracking system. For the final measurement of the inclusive photon spectra the results are combined in the overlapping p(T), interval of both methods. Direct photon spectra, or their upper limits at 90% C.L. are extracted using the direct photon excess ratio R-gamma, which quantifies the ratio of inclusive photons over decay photons generated with a decay-photon simulation. An additional hybrid method, combining photons reconstructed from conversions with those identified in the EMCal, is used for the combination of the direct photon excess ratio R-gamma, as well as the extraction of direct photon spectra or their upper limits. While no significant signal of direct photons is seen over the full p(T), range, R-gamma, for p(T), > 7 GeV/c is at least one sigma above unity and consistent with expectations from next-to-leading order pQCD calculations.
  • Goharipour, Muhammad; Khanpour, Hamzeh; Guzey, Vadim (2018)
    We present GKG18-DPDFs, a next-to-leading order (NLO) QCD analysis of diffractive parton distribution functions (diffractive PDFs) and their uncertainties. This is the first global set of diffractive PDFs determined within the xFitter framework. This analysis is motivated by all available and most up-to-date data on inclusive diffractive deep inelastic scattering (diffractive DIS). Heavy quark contributions are considered within the framework of the Thorne-Roberts (TR) general mass variable flavor number scheme (GM-VFNS). We form a mutually consistent set of diffractive PDFs due to the inclusion of high-precision data from H1/ZEUS combined inclusive diffractive cross sections measurements. We study the impact of the H1/ZEUS combined data by producing a variety of determinations based on reduced data sets. We find that these data sets have a significant impact on the diffractive PDFs with some substantial reductions in uncertainties. The predictions based on the extracted diffractive PDFs are compared to the analyzed diffractive DIS data and with other determinations of the diffractive PDFs.
  • Bartosova, Alena; Capell, René; Olesen, Jørgen E.; Jabloun, Mohamed; Refsgaard, Jens Christian; Donnelly, Chantal; Hyytiäinen, Kari; Pihlainen, Sampo; Zandersen, Marianne; Arheimer, Berit (2019)
    The Baltic Sea is suffering from eutrophication caused by nutrient discharges from land to sea, and these loads might change in a changing climate. We show that the impact from climate change by mid-century is probably less than the direct impact of changing socioeconomic factors such as land use, agricultural practices, atmospheric deposition, and wastewater emissions. We compare results from dynamic modelling of nutrient loads to the Baltic Sea under projections of climate change and scenarios for shared socioeconomic pathways. Average nutrient loads are projected to increase by 8% and 14% for nitrogen and phosphorus, respectively, in response to climate change scenarios. In contrast, changes in the socioeconomic drivers can lead to a decrease of 13% and 6% or an increase of 11% and 9% in nitrogen and phosphorus loads, respectively, depending on the pathway. This indicates that policy decisions still play a major role in climate adaptation and in managing eutrophication in the Baltic Sea region.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2019)
    An inclusive search for supersymmetry (SUSY) using the razor variables is performed using a data sample of proton-proton collisions corresponding to an integrated luminosity of 35.9 fb(-1), collected with the CMS experiment in 2016 at a center-of-mass energy of =13 TeV. The search looks for an excess of events with large transverse energy, large jet multiplicity, and large missing transverse momentum. The razor kinematic variables are sensitive to large mass differences between the parent particle and the invisible particles of a decay chain and help to identify the presence of SUSY particles. The search covers final states with zero or one charged lepton and features event categories divided according to the presence of a high transverse momentum hadronically decaying W boson or top quark, the number of jets, the number of b-tagged jets, and the values of the razor kinematic variables, in order to separate signal from background for a broad range of SUSY signatures. The addition of the boosted W boson and top quark categories within the analysis further increases the sensitivity of the search, particularly to signal models with large mass splitting between the produced gluino or squark and the lightest SUSY particle. The analysis is interpreted using simplified models of R-parity conserving SUSY, focusing on gluino pair production and top squark pair production. Limits on the gluino mass extend to 2.0 TeV, while limits on top squark mass reach 1.14 TeV.
  • Andres, Carlota; Armesto, Néstor; Niemi, Harri; Paatelainen, Risto; Salgado, Carlos A. (2020)
    Jet quenching provides a very flexible variety of observables which are sensitive to different energy- and time-scales of the strongly interacting matter created in heavy-ion collisions. Exploiting this versatility would make jet quenching an excellent chronometer of the yoctosecond structure of the evolution process. Here we show, for the first time, that a combination of jet quenching observables is sensitive to the initial stages of heavy-ion collisions, when the approach to local thermal equilibrium is expected to happen. Specifically, we find that in order to reproduce at the same time the inclusive particle production suppression, RAA, and the high-pT azimuthal asymmetries, v2, energy loss must be strongly suppressed for the first ∼0.6 fm. This exploratory analysis shows the potential of jet observables, possibly more sophisticated than the ones studied here, to constrain the dynamics of the initial stages of the evolution.
  • Walt, Marina; Helenius, Ilkka; Vogelsang, Werner (2019)
    We present new sets of nuclear parton distribution functions (nPDFs) at next-to-leading order and next-to-next-to-leading order. Our analyses are based on deeply inelastic scattering data with charged-lepton and neutrino beams on nuclear targets. In addition, a set of proton baseline PDFs is fitted within the same framework with the same theoretical assumptions. The results of this global QCD analysis are compared to existing nPDF sets and to the fitted cross sections. Also, the uncertainties resulting from the limited constraining power of the included experimental data are presented. The published work is based on an open-source tool, xFitter, which has been modified to be applicable also for a nuclear PDF analysis. The required extensions of the code are discussed as well.
  • Planck Collaboration; Akrami, Y.; Keihanen, E.; Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J. (2020)
    We analyse the Planck full-mission cosmic microwave background (CMB) temperature and E-mode polarization maps to obtain constraints on primordial non-Gaussianity (NG). We compare estimates obtained from separable template-fitting, binned, and optimal modal bispectrum estimators, finding consistent values for the local, equilateral, and orthogonal bispectrum amplitudes. Our combined temperature and polarization analysis produces the following final results: fNLlocal = −0.9 ± 5.1; fNLequil = −26 ± 47; and fNLortho = −38 ± 24 (68% CL, statistical). These results include low-multipole (4 ≤ ℓ <  40) polarization data that are not included in our previous analysis. The results also pass an extensive battery of tests (with additional tests regarding foreground residuals compared to 2015), and they are stable with respect to our 2015 measurements (with small fluctuations, at the level of a fraction of a standard deviation, which is consistent with changes in data processing). Polarization-only bispectra display a significant improvement in robustness; they can now be used independently to set primordial NG constraints with a sensitivity comparable to WMAP temperature-based results and they give excellent agreement. In addition to the analysis of the standard local, equilateral, and orthogonal bispectrum shapes, we consider a large number of additional cases, such as scale-dependent feature and resonance bispectra, isocurvature primordial NG, and parity-breaking models, where we also place tight constraints but do not detect any signal. The non-primordial lensing bispectrum is, however, detected with an improved significance compared to 2015, excluding the null hypothesis at 3.5σ. Beyond estimates of individual shape amplitudes, we also present model-independent reconstructions and analyses of the Planck CMB bispectrum. Our final constraint on the local primordial trispectrum shape is gNLlocal = (−5.8 ± 6.5) × 104 (68% CL, statistical), while constraints for other trispectrum shapes are also determined. Exploiting the tight limits on various bispectrum and trispectrum shapes, we constrain the parameter space of different early-Universe scenarios that generate primordial NG, including general single-field models of inflation, multi-field models (e.g. curvaton models), models of inflation with axion fields producing parity-violation bispectra in the tensor sector, and inflationary models involving vector-like fields with directionally-dependent bispectra. Our results provide a high-precision test for structure-formation scenarios, showing complete agreement with the basic picture of the ΛCDM cosmology regarding the statistics of the initial conditions, with cosmic structures arising from adiabatic, passive, Gaussian, and primordial seed perturbations.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2018)
    A search for supersymmetry (SUSY) is performed in final states comprising one or more jets and missing transverse momentum using data from proton-proton collisions at a centre-of-mass energy of 13 TeV. The data were recorded with the CMS detector at the CERN LHC in 2016 and correspond to an integrated luminosity of 35.9 fb(-1). The number of signal events is found to agree with the expected background yields from standard model processes. The results are interpreted in the context of simplified models of SUSY that assume the production of gluino or squark pairs and their prompt decay to quarks and the lightest neutralino. The masses of bottom, top, and mass-degenerate light-flavour squarks are probed up to 1050, 1000, and 1325 GeV, respectively. The gluino mass is probed up to 1900, 1650, and 1650 GeV when the gluino decays via virtual states of the aforementioned squarks. The strongest mass bounds on the neutralinos from gluino and squark decays are 1150 and 575 GeV, respectively. The search also provides sensitivity to simplified models inspired by split SUSY that involve the production and decay of long-lived gluinos. Values of the proper decay length CT0 from 10(-3) to 10(5) mm are considered, as well as a metastable gluino scenario. Gluino masses up to 1750 and 900 GeV are probed for CT0 = 1mm and for the metastable state, respectively. The sensitivity is moderately dependent on model assumptions for CT0 greater than or similar to 1 m. The search provides coverage of the CT0 parameter space for models involving long-lived gluinos that is complementary to existing techniques at the LHC.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2018)
    This Letter presents the results of a search for pair-produced particles of masses above 100 GeV that each decay into at least four quarks. Using data collected by the CMS experiment at the LHC in 2015-2016, corresponding to an integrated luminosity of 38.2 fb(-1), reconstructed particles are clustered into two large jets of similar mass, each consistent with four-parton substructure. No statistically significant excess of data over the background prediction is observed in the distribution of average jet mass. Pair-produced squarks with dominant hadronic R-parity-violating decays into four quarks and with masses between 0.10 and 0.72 TeV are excluded at 95% confidence level. Similarly, pair-produced gluinos that decay into five quarks are also excluded with masses between 0.10 and 1.41 TeV at 95% confidence level. These are the first constraints that have been placed on pair-produced particles with masses below 400 GeV that decay into four or five quarks, bridging a significant gap in the coverage of R-parity-violating supersymmetry parameter space.
  • Juvela, Mika (2019)
    Context. Thermal dust emission carries information on physical conditions and dust properties in many astronomical sources. Because observations represent a sum of emission along the line of sight, their interpretation often requires radiative transfer (RT) modelling. Aims. We describe a new RT program, SOC, for computations of dust emission, and examine its performance in simulations of interstellar clouds with external and internal heating. Methods. SOC implements the Monte Carlo RT method as a parallel program for shared-memory computers. It can be used to study dust extinction, scattering, and emission. We tested SOC with realistic cloud models and examined the convergence and noise of the dust-temperature estimates and of the resulting surface-brightness maps. Results. SOC has been demonstrated to produce accurate estimates for dust scattering and for thermal dust emission. It performs well with both CPUs and GPUs, the latter providing a speed-up of processing time by up to an order of magnitude. In the test cases, accelerated lambda iterations (ALIs) improved the convergence rates but was also sensitive to Monte Carlo noise. Run-time refinement of the hierarchical-grid models did not help in reducing the run times required for a given accuracy of solution. The use of a reference field, without ALI, works more robustly, and also allows the run time to be optimised if the number of photon packages is increased only as the iterations progress. Conclusions. The use of GPUs in RT computations should be investigated further.