Browsing by Subject "PRIMARY VISUAL-CORTEX"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Mattar, Marcelo G.; Olkkonen, Maria; Epstein, Russell A.; Aguirre, Geoffrey K. (2018)
    Perception and neural responses are modulated by sensory history. Visual adaptation, an example of such an effect, has been hypothesized to improve stimulus discrimination by decorrelating responses across a set of neural units. While a central theoretical model, behavioral and neural evidence for this theory is limited and inconclusive. Here, we use a parametric 3D shape-space to test whether adaptation decorrelates shape representations in humans. In a behavioral experiment with 20 subjects, we find that adaptation to a shape class improves discrimination of subsequently presented stimuli with similar features. In a BOLD fMRI experiment with 10 subjects, we observe that adaptation to a shape class decorrelates the multivariate representations of subsequently presented stimuli with similar features in object-selective cortex. These results support the long-standing proposal that adaptation improves perceptual discrimination and decorrelates neural representations, offering insights into potential underlying mechanisms.
  • Kilpeläinen, Markku; Georgeson, Mark A. (2018)
    The locations of objects in our environment constitute arguably the most important piece of information our visual system must convey to facilitate successful visually guided behaviour. However, the relevant objects are usually not point-like and do not have one unique location attribute. Relatively little is known about how the visual system represents the location of such large objects as visual processing is, both on neural and perceptual level, highly edge dominated. In this study, human observers made saccades to the centres of luminance defined squares (width 4 deg), which appeared at random locations (8 deg eccentricity). The phase structure of the square was manipulated such that the points of maximum luminance gradient at the square’s edges shifted from trial to trial. The average saccade endpoints of all subjects followed those shifts in remarkable quantitative agreement. Further experiments showed that the shifts were caused by the edge manipulations, not by changes in luminance structure near the centre of the square or outside the square. We conclude that the human visual system programs saccades to large luminance defined square objects based on edge locations derived from the points of maximum luminance gradients at the square’s edges.
  • Olkkonen, Maria; Saarela, Toni P.; Allred, Sarah R. (2016)
    A key challenge for the visual system is to extract constant object properties from incoming sensory information. This information is ambiguous because the same sensory signal can arise from many combinations of object properties and viewing conditions and noisy because of the variability in sensory encoding. The competing accounts for perceptual constancy of surface lightness fall into two classes of model: One derives lightness estimates from border contrasts, and another explicitly infers surface reflectance. To test these accounts, we combined a novel psychophysical task with probabilistic implementations of both models. Observers compared the lightness of two stimuli under a memory demand (a delay between the stimuli), a context change (different surround luminance), or both. Memory biased perceived lightness toward the mean of the whole stimulus ensemble. Context change caused the classical simultaneous lightness contrast effect, in which a target appears lighter against a dark surround and darker against a light surround. These effects were not independent: Combined memory load and context change elicited a bias smaller than predicted assuming an independent combination of biases. Both models explain the memory bias as an effect of prior expectations on perception. Both models also produce a context effect, but only the reflectance model correctly describes the magnitude. The reflectance model, finally, captures the memory-context interaction better than the contrast model, both qualitatively and quantitatively. We conclude that (a) lightness perception is more consistent with reflectance inference than contrast coding and (b) adding a memory demand to a perceptual task both renders it more ecologically valid and helps adjudicate between competing models.
  • Palva, Satu; Palva, J. Matias (2018)
    Sensorimotor predictions are essential for adaptive behavior. In natural environments, events that demand sensorimotor predictions unfold across many timescales, and corresponding temporal predictions (either explicit or implicit) should therefore emerge in brain dynamics. Neuronal oscillations are scale-specific processes found in several frequency bands. They underlie periodicity in sensorimotor processing and can represent temporal predictions via their phase dynamics. These processes build upon endogenous neural rhythmicity and adapt in response to exogenous timing demands. While much of the research on periodicity in neural processing has focused on subsecond oscillations, these fast-scale rhythms are in fact paralleled by critical-like, scale-free dynamics and fluctuations of brain activity at various timescales, ranging from seconds to hundreds of seconds. In this review, we put forth a framework positing that critical brain dynamics are essential for the role of neuronal oscillations in timing and that cross-frequency coupling flexibly organizes neuronal processing across multiple frequencies.
  • Gutmann, Michael U.; Laparra, Valero; Hyvärinen, Aapo; Malo, Jesus (2014)