Browsing by Subject "PROGENITOR CELLS"

Sort by: Order: Results:

Now showing items 1-19 of 19
  • Yu, Seong-Jin; Airavaara, Mikko; Wu, Kuo-Jen; Harvey, Brandon K.; Liu, H. S.; Yang, Yihong; Zacharek, Alex; Chen, Jieli; Wang, Yun (2017)
    The purpose of this study was to examine the neurorestorative effect of delayed 9 cis retinoic acid (9cRA) treatment for stroke. Adult male rats received a 90-min right distal middle cerebral artery occlusion (dMCAo). Animals were separated into two groups with similar infarction sizes, based on magnetic resonance imaging on day 2 after dMCAo. 9cRA or vehicle was given via an intranasal route daily starting from day 3. Stroke rats receiving 9cRA post-treatment showed an increase in brain 9cRA levels and greater recovery in motor function. 9cRA enhanced the proliferation of bromodeoxyuridine (+) cells in the subventricular zone (SVZ) and lesioned cortex in the stroke brain. Using subventricular neurosphere and matrigel cultures, we demonstrated that proliferation and migration of SVZ neuroprogenitor cells were enhanced by 9cRA. Our data support a delayed and non-invasive drug therapy for stroke. Intranasal 9cRA can facilitate the functional recovery and endogenous repair in the ischemic brain.
  • Comai, Glenda; Heude, Eglantine; Mella, Sebastian; Paisant, Sylvain; Pala, Francesca; Gallardo, Mirialys; Langa, Francina; Kardon, Gabrielle; Gopalakrishnan, Swetha; Tajbakhsh, Shahragim (2019)
    In most vertebrates, the upper digestive tract is composed of muscularized jaws linked to the esophagus that permits food ingestion and swallowing. Masticatory and esophagus striated muscles (ESM) share a common cardiopharyngeal mesoderm (CPM) origin, however ESM are unusual among striated muscles as they are established in the absence of a primary skeletal muscle scaffold. Using mouse chimeras, we show that the transcription factors Tbx1 and Isl1 are required cell-autonomously for myogenic specification of ESM progenitors. Further, genetic loss-of-function and pharmacological studies point to MET/HGF signaling for antero-posterior migration of esophagus muscle progenitors, where Hgf ligand is expressed in adjacent smooth muscle cells. These observations highlight the functional relevance of a smooth and striated muscle progenitor dialogue for ESM patterning. Our findings establish a Tbx1-Isl1-Met genetic hierarchy that uniquely regulates esophagus myogenesis and identify distinct genetic signatures that can be used as framework to interpret pathologies arising within CPM derivatives.
  • Saarimaki-Vire, Jonna; Balboa, Diego; Russell, Mark A.; Saarikettu, Juha; Kinnunen, Matias; Keskitalo, Salla; Malhi, Amrinder; Valensisi, Cristina; Andrus, Colin; Eurola, Solja; Grym, Heli; Ustinov, Jarkko; Wartiovaara, Kirmo; Hawkins, R. David; Silvennoinen, Olli; Varjosalo, Markku; Morgan, Noel G.; Otonkoski, Timo (2017)
    Activating germline mutations in STAT3 were recently identified as a cause of neonatal diabetes mellitus associated with beta-cell autoimmunity. We have investigated the effect of an activating mutation, STAT3(K392R,) on pancreatic development using induced pluripotent stem cells (iPSCs) derived from a patient with neonatal diabetes and pancreatic hypoplasia. Early pancreatic endoderm differentiated similarly from STAT3(K392R) and healthy-control cells, but in later stages, NEUROG3 expressionwas upregulated prematurely in STAT3(K392R) cells together with insulin (INS) and glucagon (GCG). RNA sequencing (RNA-seq) showed robust NEUROG3 downstream targets upregulation. STAT3 mutation correction with CRISPR/Cas9 reversed completely the disease phenotype. STAT3(K392R) -activating properties were not explained fully by altered DNA-binding affinity or increased phosphorylation. Instead, reporter assays demonstrated NEUROG3 promoter activation by STAT3 in pancreatic cells. Furthermore, proteomic and immunocytochemical analyses revealed increased nuclear translocation of STAT3(K392R). Collectively, our results demonstrate that the STAT3(K392R) mutation causes premature endocrine differentiation through direct induction of NEUROG3 expression.
  • Talman, Virpi; Kivelä, Milla Riikka (2018)
    The heart is a complex organ consisting of various cell types, each of which plays an important role in both physiological and pathophysiological conditions. The cells communicate with each other through direct cell-cell interactions and paracrine signaling, and both homotypic and heterotypic cell interactions contribute to the organized structure and proper function of the heart. Cardiomyocytes (CMs) and endothelial cells (ECs) are two of the most abundant cardiac cell types and they also play central roles in both cardiac remodeling and regeneration. The postnatal cell cycle withdrawal of CMs, which takes place within days or weeks after birth, represents the major barrier for regeneration in adult mammalian hearts, as adult CMs exhibit a very low proliferative capacity. Recent evidence highlights the importance of ECs not only as the most abundant cell type in the heart but also as key players in post-infarction remodeling and regeneration. In this MiniReview, we focus on blood vascular ECs and CMs and their roles and interactions in cardiac physiology and pathologies, with a special emphasis on cardiac regeneration. We summarize the known mediators of the bidirectional CM-EC interactions and discuss the related recent advances in the development of therapies aiming to promote heart repair and regeneration targeting these two cell types.
  • Lengefeld, Jette; Cheng, Chia-Wei; Maretich, Pema; Blair, Marguerite; Hagen, Hannah; McReynolds, Melanie R.; Sullivan, Emily; Majors, Kyra; Roberts, Christina; Kang, Joon Ho; Steiner, Joachim D.; Miettinen, Teemu P.; Manalis, Scott R.; Antebi, Adam; Morrison, Sean J.; Lees, Jacqueline A.; Boyer, Laurie A.; Yilmaz, Ömer H.; Amon, Angelika (2021)
    Stem cells are remarkably small. Whether small size is important for stem cell function is unknown. We find that hematopoietic stem cells (HSCs) enlarge under conditions known to decrease stem cell function. This decreased fitness of large HSCs is due to reduced proliferation and was accompanied by altered metabolism. Preventing HSC enlargement or reducing large HSCs in size averts the loss of stem cell potential under conditions causing stem cell exhaustion. Last, we show that murine and human HSCs enlarge during aging. Preventing this age-dependent enlargement improves HSC function. We conclude that small cell size is important for stem cell function in vivo and propose that stem cell enlargement contributes to their functional decline during aging.
  • Stepanova, P.; Srinivasan, V.; Lindholm, D.; Voutilainen, M. H. (2020)
    Huntington's disease (HD) is a neurodegenerative disorder with a progressive loss of medium spiny neurons in the striatum and aggregation of mutant huntingtin in the striatal and cortical neurons. Currently, there are no rational therapies for the treatment of the disease. Cerebral dopamine neurotrophic factor (CDNF) is an endoplasmic reticulum (ER) located protein with neurotrophic factor (NTF) properties, protecting and restoring the function of dopaminergic neurons in animal models of PD more effectively than other NTFs. CDNF is currently in phase I-II clinical trials on PD patients. Here we have studied whether CDNF has beneficial effects on striatal neurons in in vitro and in vivo models of HD. CDNF was able to protect striatal neurons from quinolinic acid (QA)-induced cell death in vitro via increasing the IRE1 alpha/XBP1 signalling pathway in the ER. A single intrastriatal CDNF injection protected against the deleterious effects of QA in a rat model of HD. CDNF improved motor coordination and decreased ataxia in QA-toxin treated rats, and stimulated the neurogenesis by increasing doublecortin (DCX)-positive and NeuN-positive cells in the striatum. These results show that CDNF positively affects striatal neuron viability reduced by QA and signifies CDNF as a promising drug candidate for the treatment of HD.
  • Lund, Carina; Pulli, Aino Kristiina; Yellapragada, Venkatram; Giacobini, Paolo; Lundin (Stenroos), Karolina; Vuoristo, Sanna; Tuuri, Timo; Noisa, Parinya; Raivio, Taneli (2016)
    Gonadotropin-releasing hormone (GnRH) neurons regulate human puberty and reproduction. Modeling their development and function in vitro would be of interest for both basic research and clinical translation. Here, we report a three-step protocol to differentiate human pluripotent stem cells (hPSCs) into GnRH-secreting neurons. Firstly, hPSCs were differentiated to FOXG1, EMX2, and PAX6 expressing anterior neural progenitor cells (NPCs) by dual SMAD inhibition. Secondly, NPCs were treated for 10 days with FGF8, which is a key ligand implicated in GnRH neuron ontogeny, and finally, the cells were matured with Notch inhibitor to bipolar TUJ1-positive neurons that robustly expressed GNRH1 and secreted GnRH decapeptide into the culture medium. The protocol was reproducible both in human embryonic stem cells and induced pluripotent stem cells, and thus provides a translational tool for investigating the mechanisms of human puberty and its disorders.
  • Deng, Shan; Yang, Xiaojun; Lassus, Heini; Liang, Shun; Kaur, Sippy; Ye, Qunrui; Li, Chunsheng; Wang, Li-Ping; Roby, Katherine F.; Orsulic, Sandra; Connolly, Denise C.; Zhang, Youcheng; Montone, Kathleen; Butzow, Ralf; Coukos, George; Zhang, Lin (2010)
  • Omairi, Saleh; Matsakas, Antonios; Degens, Hans; Kretz, Oliver; Hansson, Kenth-Arne; Solbra, Andreas Vavang; Bruusgaard, Jo C.; Joch, Barbara; Sartori, Roberta; Giallourou, Natasa; Mitchell, Robert; Collins-Hooper, Henry; Foster, Keith; Pasternack, Arja; Ritvos, Olli; Sandri, Marco; Narkar, Vihang; Swann, Jonathan R.; Huber, Tobias B.; Patel, Ketan (2016)
    A central tenet of skeletal muscle biology is the existence of an inverse relationship between the oxidative fibre capacity and its size. However, robustness of this relationship is unknown. We show that superimposition of Estrogen-related receptor gamma (Erry) on the myostatin (Mtn) mouse null background (Mtn(-/-)Err gamma(Tg/+)) results in hypertrophic muscle with a high oxidative capacity thus violating the inverse relationship between fibre size and oxidative capacity. We also examined the canonical view that oxidative muscle phenotype positively correlate with Satellite cell number, the resident stem cells of skeletal muscle. Surprisingly, hypertrophic fibres from Mtn(-/-)Err gamma(Tg/+) mouse showed satellite cell deficit which unexpectedly did not affect muscle regeneration. These observations 1) challenge the concept of a constraint between fibre size and oxidative capacity and 2) indicate the important role of the microcirculation in the regenerative capacity of a muscle even when satellite cell numbers are reduced.
  • Hurskainen, Maria; Ainasoja, Olli; Lemström, Karl B. (2021)
    The median survival of patients with heart transplants is relatively limited, implying one of the most relevant questions in the field-how to expand the lifespan of a heart allograft? Despite optimal transplantation conditions, we do not anticipate a rise in long-term patient survival in near future. In order to develop novel strategies for patient monitoring and specific therapies, it is critical to understand the underlying pathological mechanisms at cellular and molecular levels. These events are driven by innate immune response and allorecognition driven inflammation, which controls both tissue damage and repair in a spatiotemporal context. In addition to immune cells, also structural cells of the heart participate in this process. Novel single cell methods have opened new avenues for understanding the dynamics driving the events leading to allograft failure. Here, we review current knowledge on the cellular composition of a normal heart, and cellular mechanisms of ischemia-reperfusion injury (IRI), acute rejection and cardiac allograft vasculopathy (CAV) in the transplanted hearts. We highlight gaps in current knowledge and suggest future directions, in order to improve cellular and molecular understanding of failing heart allografts.
  • Maki, Koichiro; Nava, Michele M.; Villeneuve, Clementine; Chang, Minki; Furukawa, Katsuko S.; Ushida, Takashi; Wickström, Sara A. (2021)
    Articular cartilage protects and lubricates joints for smooth motion and transmission of loads. Owing to its high water content, chondrocytes within the cartilage are exposed to high levels of hydrostatic pressure, which has been shown to promote chondrocyte identity through unknown mechanisms. Here, we investigate the effects of hydrostatic pressure on chondrocyte state and behavior, and discover that application of hydrostatic pressure promotes chondrocyte quiescence and prevents maturation towards the hyperlrophic state. Mechanistically, hydrostatic pressure reduces the amount of trimethylated H3K9 (K3K9me3)-marked constitutive heterochromatin and concomitantly increases H3K27me3-marked facultative heterochromatin. Reduced levels of H3K9me3 attenuates expression of pre-hypertrophic genes, replication and transcription, thereby reducing replicative stress. Conversely, promoting replicative stress by inhibition of topoisomerase II decreases Sox9 expression, suggesting that it enhances chondrocyte maturation. Our results reveal how hydrostatic pressure triggers chromatin remodeling to impact cell fate and function. This article has an associated First Person interview with the first author of the paper.
  • Kalebic, Nereo; Namba, Takashi (2021)
    Cell polarity is fundamentally important for understanding brain development. Here, we hypothesize that the inheritance and flexibility of cell polarity during neocortex development could be implicated in neocortical evolutionary expansion. Molecular and morphological features of cell polarity may be inherited from one type of progenitor cell to the other and finally transmitted to neurons. Furthermore, key cell types, such as basal progenitors and neurons, exhibit a highly flexible polarity. We suggest that both inheritance and flexibility of cell polarity are implicated in the amplification of basal progenitors and tangential dispersion of neurons, which are key features of the evolutionary expansion of the neocortex.
  • Englund, Johanna; Ritchie, Alexandra; Blaas, Leander; Cojoc, Hanne; Pentinmikko, Nalle; Dohla, Julia; Iqbal, Sharif; Patarroyo, Manuel; Katajisto, Pekka (2021)
    Epithelial attachment to the basement membrane (BM) is essential for mammary gland development, yet the exact roles of specific BM components remain unclear. Here, we show that Laminin alpha 5 (Lama5) expression specifically in the luminal epithelial cells is necessary for normal mammary gland growth during puberty, and for alveologenesis during pregnancy. Lama5 loss in the keratin 8-expressing cells results in reduced frequency and differentiation of hormone receptor expressing (HR+) luminal cells. Consequently, Wnt4-mediated crosstalk between HR+ luminal cells and basal epithelial cells is compromised during gland remodeling, and results in defective epithelial growth. The effects of Lama5 deletion on gland growth and branching can be rescued by Wnt4 supplementation in the in vitro model of branching morphogenesis. Our results reveal a surprising role for BM-protein expression in the luminal mammary epithelial cells, and highlight the function of Lama5 in mammary gland remodeling and luminal differentiation.
  • Tigistu-Sahle, Feven; Lampinen, Milla; Kilpinen, Lotta; Holopainen, Minna; Lehenkari, Petri; Laitinen, Saara; Käkelä, Reijo (2017)
    High arachidonic acid (20:4n-6) and low n-3 PUFA levels impair the capacity of cultured human bone marrow mesenchymal stromal cells (hBMSCs) to modulate immune functions. The capacity of the hBMSCs to modify PUFA structures was found to be limited. Therefore, different PUFA supplements given to the cells resulted in very different glycerophospholipid (GPL) species profiles and substrate availability for phospholipases, which have preferences for polar head group and acyl chains when liberating PUFA precursors for production of lipid mediators. When supplemented with 20:4n-6, the cells increased prostaglandin E2 secretion. However, they elongated 20:4n-6 to the less active precursor, 22:4n-6, and also incorporated it into triacylglycerols, which may have limited the proinflammatory signaling. The n-3 PUFA precursor, 18:3n-3, had little potency to reduce the GPL 20:4n-6 content, while the eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acid supplements efficiently displaced the 20:4n-6 acyls, and created diverse GPL species substrate pools allowing attenuation of inflammatory signaling.(Jlr) The results emphasize the importance of choosing appropriate PUFA supplements for in vitro hBMSC expansion and suggests that for optimal function they require an exogenous fatty acid source providing 20:5n-3 and 22:6n-3 sufficiently, but 20:4n-6 moderately, which calls for specifically designed optimal PUFA supplements for the cultures.
  • Renko, Outi; Tolonen, Anna-Maria; Rysä, Jaana; Magga, Johanna; Mustonen, Erja; Ruskoaho, Heikki; Serpi, Raisa (2018)
    Identification of the adult cardiac stem cells (CSCs) has offered new therapeutic possibilities for treating ischemic myocardium. CSCs positive for the cell surface antigen c-Kit are known as the primary source for cardiac regeneration. Accumulating evidence shows that chemokines play important roles in stem cell homing. Here we investigated molecular targets to be utilized in modulating the mobility of endogenous CSCs. In a four week follow-up after experimental acute myocardial infarction (AMI) with ligation of the left anterior descending (LAD) coronary artery of Sprague-Dawley rats c-Kit+ CSCs redistributed in the heart. The number of c-Kit+ CSCs in the atrial c-Kit niche was diminished, whereas increased amount was observed in the left ventricle and apex. This was associated with increased expression of stromal cell-derived factor 1 alpha (SDF1 alpha), and a significant positive correlation was found between c-Kit+ CSCs and SDF1a expression in the heart. Moreover, the migratory capacity of isolated c-Kit+ CSCs was induced by SDF1 treatment in vitro. We conclude that upregulation of SDF1a after AMI associates with increased expression of endogenous c-Kit+ CSCs in the injury area, and show induced migration of c-Kit+ cells by SDF1.
  • Anttila, Jenni E.; Pöyhönen, Suvi; Airavaara, Mikko (2019)
    A stroke affecting the somatosensory pathway can trigger central post-stroke pain syndrome (CPSP). The symptoms often include hyperalgesia, which has also been described in rodents after the direct damage of the thalamus. Previous studies have shown that hemorrhagic stroke or ischemia caused by vasoconstriction in the thalamus induces increased pain sensitivity. We investigated whether inducing secondary damage in the thalamus by a cortical stroke causes similar pain hypersensitivity as has previously been reported with direct ischemic injury. We induced a focal cortical ischemia-reperfusion injury in male rats, quantified the amount of secondary neurodegeneration in the thalamus, and measured whether the thalamic neurodegeneration is associated with thermal or mechanical hypersensitivity. After one month, we observed extensive neuronal degeneration and found approximately 40% decrease in the number of NeuN+ cells in the ipsilateral thalamus. At the same time, there was a massive accumulation-a 30-fold increase-of phagocytic cells in the ipsilateral thalamus. However, despite the evident damage in the thalamus, we did not observe thermal or mechanical sensitization. Thus, thalamic neurodegeneration after cortical ischemia-reperfusion does not induce CPSP-like symptoms in rats, and these results suggest that direct ischemic damage is needed for CPSP induction. Despite not observing hyperalgesia, we investigated whether administration of cerebral dopamine neurotrophic factor (CDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF) into the ipsilateral thalamus would reduce the secondary damage. We gave a single injection (10 mu g) of recombinant CDNF or MANF protein into the thalamus at 7 days post-stroke. Both CDNF and MANF treatment promoted the functional recovery but had no effect on the neuronal loss or the amount of phagocytic cells in the thalamus.
  • Laitinen, Anita; Lampinen, Milla; Liedtke, Stefanie; Kilpinen, Lotta; Kerkela, Erja; Sarkanen, Jertta-Riina; Heinonen, Tuula; Kogler, Gesine; Laitinen, Saara (2016)
    Background aims. Cord blood (CB) is an attractive source of mesenchymal stromal cells (MSCs) because of its abundant availability and ease of collection. However, the success rate of generating CB-MSCs is low. In this study, our aim was to demonstrate the efficiency of our previously described method to obtain MSCs from CB and further characterize them and to study the effects of different culture conditions on MSCs. Methods. CB-MSC cultures were established in low oxygen (3%) conditions on fibronectin in 10% fetal bovine serum containing culture medium supplemented with combinations of growth factors. Cells were characterized for their adipogenic, osteogenic and chondrogenic differentiation capacity; phenotype; and HOX gene expression profile. The functionality of the cells cultured in different media was tested in vitro with angiogenesis and T-cell proliferation assays. Results. We demonstrate 87% efficacy in generating MSCs from CB. The established cells had typical MSC characteristics with reduced adipogenic differentiation potential and a unique HOX gene fingerprint. Growth factor rich medium and a 3% oxygen condition enhanced cell proliferation; however, the growth factor rich medium had a negative effect on the expression of CD90. Dexamethasone-containing medium improved the capacity of the cells to suppress T-cell proliferation, whereas the cells grown without dexamethasone were more able to support angiogenesis. Conclusions. Our results demonstrate that the composition of expansion medium is critical for the functionality of MSCs and should always be appropriately defined for each purpose.
  • Vannini, Nicola; Campos, Vasco; Girotra, Mukul; Trachsel, Vincent; Rojas-Sutterlin, Shanti; Tratwal, Josefine; Ragusa, Simone; Stefanidis, Evangelos; Ryu, Dongryeol; Rainer, Pernille Y.; Nikitin, Gena; Giger, Sonja; Li, Terytty Y.; Semilietof, Aikaterini; Oggier, Aurelien; Yersin, Yannick; Tauzin, Loic; Pirinen, Eija; Cheng, Wan-Chen; Ratajczak, Joanna; Canto, Carles; Ehrbar, Martin; Sizzano, Federico; Petrova, Tatiana V.; Vanhecke, Dominique; Zhang, Lianjun; Romero, Pedro; Nahimana, Aimable; Cherix, Stephane; Duchosal, Michel A.; Ho, Ping-Chih; Deplancke, Bart; Coukos, George; Auwerx, Johan; Lutolf, Matthias P.; Naveiras, Olaia (2019)
    It has been recently shown that increased oxidative phosphorylation, as reflected by increased mitochondrial activity, together with impairment of the mitochondrial stress response, can severely compromise hematopoietic stem cell (HSC) regeneration. Here we show that the NAD(+)-boosting agent nicotinamide riboside (NR) reduces mitochondrial activity within HSCs through increased mitochondrial clearance, leading to increased asymmetric HSC divisions. NR dietary supplementation results in a significantly enlarged pool of progenitors, without concurrent HSC exhaustion, improves survival by 80%, and accelerates blood recovery after murine lethal irradiation and limiting-HSC transplantation. In immune-deficient mice, NR increased the production of human leucocytes from hCD34+ progenitors. Our work demonstrates for the first time a positive effect of NAD(+)-boosting strategies on the most primitive blood stem cells, establishing a link between HSC mitochondrial stress, mitophagy, and stem-cell fate decision, and unveiling the potential of NR to improve recovery of patients suffering from hematological failure including post chemo- and radiotherapy.
  • Han, Jinah; Calvo, Charles-Felix; Kang, Tae Hyuk; Baker, Kasey L.; Park, June-Hee; Parras, Carlos; Levittas, Marine; Birba, Ulrick; Pibouin-Fragner, Laurence; Fragner, Pascal; Bilguvar, Kaya; Duman, Ronald S.; Nurmi, Harri Juhani; Alitalo, Kari; Eichmann, Anne C.; Thomas, Jean-Leon (2015)