Browsing by Subject "PROTEIN"

Sort by: Order: Results:

Now showing items 1-20 of 328
  • Papaevgeniou, Nikoletta; Sakellari, Marianthi; Jha, Sweta; Tavernarakis, Nektarios; Holmberg, Carina I.; Gonos, Efstathios S.; Chondrogianni, Niki (2016)
    Aims: Proteasomes are constituents of the cellular proteolytic networks that maintain protein homeostasis through regulated proteolysis of normal and abnormal (in any way) proteins. Genetically mediated proteasome activation in multicellular organisms has been shown to promote longevity and to exert protein antiaggregation activity. In this study, we investigate whether compound-mediated proteasome activation is feasible in a multicellular organism and we dissect the effects of such approach in aging and Alzheimer's disease (AD) progression. Results: Feeding of wild-type Caenorhabditis elegans with 18 alpha-glycyrrhetinic acid (18 alpha-GA; a previously shown proteasome activator in cell culture) results in enhanced levels of proteasome activities that lead to a skinhead-1- and proteasomeactivation-dependent life span extension. The elevated proteasome function confers lower paralysis rates in various AD nematode models accompanied by decreased A beta deposits, thus ultimately decelerating the progression of AD phenotype. More importantly, similar positive results are also delivered when human and murine cells of nervous origin are subjected to 18 alpha-GA treatment. Innovation: This is the first report of the use of 18 alpha-GA, a diet-derived compound as prolongevity and antiaggregation factor in the context of a multicellular organism. Conclusion: Our results suggest that proteasome activation with downstream positive outcomes on aging and AD, an aggregation-related disease, is feasible in a nongenetic manipulation manner in a multicellular organism. Moreover, they unveil the need for identification of antiaging and antiamyloidogenic compounds among the nutrients found in our normal diet.
  • Lluch, Aina; Veiga, Sonia R.; Latorre, Jèssica; Moreno-Navarrete, José M.; Bonifaci, Núria; Nguyen, Van Dien; Zhou, You; Höring, Marcus; Liebisch, Gerhard; Olkkonen, Vesa M.; Llobet-Navas, David; Thomas, George; Rodríguez-Barrueco, Ruth; Fernández-Real, José M.; Kozma, Sara C.; Ortega, Francisco J. (2022)
    The ribosomal protein S6 kinase 1 (S6K1) is a relevant effector downstream of the mammalian target of rapamycin complex 1 (mTORC1), best known for its role in the control of lipid homeostasis. Consistent with this, mice lacking the S6k1 gene have a defect in their ability to induce the commitment of fat precursor cells to the adipogenic lineage, which contributes to a significant reduction of fat mass. Here, we assess the therapeutic blockage of S6K1 in diet-induced obese mice challenged with LY2584702 tosylate, a specific oral S6K1 inhibitor initially developed for the treatment of solid tumors. We show that diminished S6K1 activity hampers fat mass expansion and ameliorates dyslipidemia and hepatic steatosis, while modifying transcriptome-wide gene expression programs relevant for adipose and liver function. Accordingly, decreased mTORC1 signaling in fat (but increased in the liver) segregated with defective epithelial-mesenchymal transition and the impaired expression of Cd36 (coding for a fatty acid translocase) and Lgals1 (Galectin 1) in both tissues. All these factors combined align with reduced adipocyte size and improved lipidomic signatures in the liver, while hepatic steatosis and hypertriglyceridemia were improved in treatments lasting either 3 months or 6 weeks.
  • Kostopoulos, Ioannis; Aalvink, Steven; Kovatcheva-Datchary, Petia; Nijsse, Bart; Backhed, Fredrik; Knol, Jan; de Vos, Willem M.; Belzer, Clara (2021)
    The human gastrointestinal tract is colonized by a diverse microbial community, which plays a crucial role in human health. In the gut, a protective mucus layer that consists of glycan structures separates the bacteria from the host epithelial cells. These host-derived glycans are utilized by bacteria that have adapted to this specific compound in the gastrointestinal tract. Our study investigated the close interaction between two distinct gut microbiota members known to use mucus glycans, the generalist Bacteroides thetaiotaomicron and the specialist Akkermansia muciniphila in vitro and in vivo. The in vitro study, in which mucin was the only nutrient source, indicated that B. thetaiotaomicron significantly upregulated genes coding for Glycoside Hydrolases (GHs) and mucin degradation activity when cultured in the presence of A. muciniphila. Furthermore, B. thetaiotaomicron significantly upregulated the expression of a gene encoding for membrane attack complex/perforin (MACPF) domain in co-culture. The transcriptome analysis also indicated that A. muciniphila was less affected by the environmental changes and was able to sustain its abundance in the presence of B. thetaiotaomicron while increasing the expression of LPS core biosynthesis activity encoding genes (O-antigen ligase, Lipid A and Glycosyl transferases) as well as ABC transporters. Using germ-free mice colonized with B. thetaiotaomicron and/or A. muciniphila, we observed a more general glycan degrading profile in B. thetaiotaomicron while the expression profile of A. muciniphila was not significantly affected when colonizing together, indicating that two different nutritional niches were established in mice gut. Thus, our results indicate that a mucin degrading generalist adapts to its changing environment, depending on available carbohydrates while a mucin degrading specialist adapts by coping with competing microorganism through upregulation of defense related genes.
  • Lahtinen, Alexandra; Puttonen, Sampsa; Vanttola, Päivi; Viitasalo, Katriina; Sulkava, Sonja; Pervjakova, Natalia; Joensuu, Anni; Salo, Perttu; Toivola, Auli; Härmä, Mikko; Milani, Lili; Perola, Markus; Paunio, Tiina (2019)
    Short sleep duration or insomnia may lead to an increased risk of various psychiatric and cardio-metabolic conditions. Since DNA methylation plays a critical role in the regulation of gene expression, studies of differentially methylated positions (DMPs) might be valuable for understanding the mechanisms underlying insomnia. We performed a cross-sectional genome-wide analysis of DNA methylation in relation to self-reported insufficient sleep in individuals from a community-based sample (79 men, aged 39.3 +/- 7.3), and in relation to shift work disorder in an occupational cohort (26 men, aged 44.9 +/- 9.0). The analysis of DNA methylation data revealed that genes corresponding to selected DMPs form a distinctive pathway: "Nervous System Development" (FDR P value <0.05). We found that 78% of the DMPs were hypomethylated in cases in both cohorts, suggesting that insufficient sleep may be associated with loss of DNA methylation. A karyoplot revealed clusters of DMPs at various chromosomal regions, including 12 DMPs on chromosome 17, previously associated with Smith-Magenis syndrome, a rare condition comprising disturbed sleep and inverse circadian rhythm. Our findings give novel insights into the DNA methylation patterns associated with sleep loss, possibly modifying processes related to neuroplasticity and neurodegeneration. Future prospective studies are needed to confirm the observed associations.
  • Hytönen, Marjo K.; Lohi, Hannes (2019)
    Hairlessness is a breed-specific feature selected for in some dog breeds but a rare abnormality in some others such as Scottish Deerhounds (SD). In SDs, the affected puppies are born with sparse hair but lose it within the first 2months leaving the dogs completely hairless. The previous studies have implicated variants in FOXI3 and SGK3 in hairlessness; however, the known variants do not explain hairlessness in all breeds such as SDs. We investigated the genetic cause in 66 SDs, including a litter with two hairless dogs. We utilized a combined approach of genome-wide homozygosity mapping and whole-genome sequencing of a hairless SD followed by recessive filtering according to a recessive model against 340 control genomes. Only two homozygous-coding variants were discovered in the homozygosity regions, including a 1-bp insertion in exon 2 of SGK3. This results in a predicted frameshift and very early truncation (49/490 amino acids) of the SGK3 protein. Additional screening of the recessive variant demonstrated a full segregation with the hairlessness and a 12% carrier frequency in the SD breed. The variant was not found in the related Irish Wolfhound breed. This study identifies the second hairless variant in the SGK3 gene in dogs and further highlights its role as a candidate gene for androgen-independent hair loss or alopecia in human.
  • Kyostila, Kaisa; Syrja, Pernilla; Jagannathan, Vidhya; Chandrasekar, Gayathri; Jokinen, Tarja S; Seppala, Eija H.; Becker, Doreen; Drogemuller, Michaela; Dietschi, Elisabeth; Drogemuller, Cord; Lang, Johann; Steffen, Frank; Rohdin, Cecilia; Jaderlund, Karin H.; Lappalainen, Anu K.; Hahn, Kerstin; Wohlsein, Peter; Baumgartner, Wolfgang; Henke, Diana; Oevermann, Anna; Kere, Juha; Lohi, Hannes; Leeb, Tosso (2015)
    Inherited neurodegenerative disorders are debilitating diseases that occur across different species. We have performed clinical, pathological and genetic studies to characterize a novel canine neurodegenerative disease present in the Lagotto Romagnolo dog breed. Affected dogs suffer from progressive cerebellar ataxia, sometimes accompanied by episodic nystagmus and behavioral changes. Histological examination revealed unique pathological changes, including profound neuronal cytoplasmic vacuolization in the nervous system, as well as spheroid formation and cytoplasmic aggregation of vacuoles in secretory epithelial tissues and mesenchymal cells. Genetic analyses uncovered a missense change, c.1288G>A; p.A430T, in the autophagy-related ATG4D gene on canine chromosome 20 with a highly significant disease association (p = 3.8 x 10(-136)) in a cohort of more than 2300 Lagotto Romagnolo dogs. ATG4D encodes a poorly characterized cysteine protease belonging to themacroautophagy pathway. Accordingly, our histological analyses indicated altered autophagic flux in affected tissues. The knockdown of the zebrafish homologue atg4da resulted in a widespread developmental disturbance and neurodegeneration in the central nervous system. Our study describes a previously unknown canine neurological disease with particular pathological features and implicates the ATG4D protein as an important autophagy mediator in neuronal homeostasis. The canine phenotype serves as a model to delineate the disease-causing pathological mechanism(s) and ATG4D function, and can also be used to explore treatment options. Furthermore, our results reveal a novel candidate gene for human neurodegeneration and enable the development of a genetic test for veterinary diagnostic and breeding purposes.
  • Emdin, Connor A.; Haas, Mary E.; Khera, Amit V.; Aragam, Krishna; Chaffin, Mark; Klarin, Derek; Hindy, George; Jiang, Lan; Wei, Wei-Qi; Feng, Qiping; Karjalainen, Juha; Havulinna, Aki; Kiiskinen, Tuomo; Bick, Alexander; Ardissino, Diego; Wilson, James G.; Schunkert, Heribert; McPherson, Ruth; Watkins, Hugh; Elosua, Roberto; Bown, Matthew J.; Samani, Nilesh J.; Baber, Usman; Erdmann, Jeanette; Gupta, Namrata; Danesh, John; Saleheen, Danish; Chang, Kyong-Mi; Vujkovic, Marijana; Voight, Ben; Damrauer, Scott; Lynch, Julie; Kaplan, David; Serper, Marina; Tsao, Philip; Program, Million Veteran; Mercader, Josep; Hanis, Craig; Daly, Mark; Denny, Joshua; Gabriel, Stacey; Kathiresan, Sekar (2020)
    Author summary Cirrhosis is a leading cause of death worldwide. However, the genetic underpinnings of cirrhosis remain poorly understood. In this study, we analyze twelve thousand individuals with cirrhosis and identify a common missense variant in a gene called MARC1 that protects against cirrhosis. Carriers of this missense variant also have lower blood cholesterol levels, lower liver enzyme levels and reduced liver fat. We identify an additional two low-frequency coding variants in MARC1 that are also associated with lower cholesterol levels, lower liver enzyme levels and protection from cirrhosis. Finally, we identify an individual homozygous for a predicted loss-of-function variant in MARC1 who exhibits very low blood LDL cholesterol levels. These genetic findings suggest that MARC1 deficiency may lower blood cholesterol levels and protect against cirrhosis, pointing to MARC1 as a potential therapeutic target for liver disease. Analyzing 12,361 all-cause cirrhosis cases and 790,095 controls from eight cohorts, we identify a common missense variant in the Mitochondrial Amidoxime Reducing Component 1 gene (MARC1 p.A165T) that associates with protection from all-cause cirrhosis (OR 0.91, p = 2.3*10(-11)). This same variant also associates with lower levels of hepatic fat on computed tomographic imaging and lower odds of physician-diagnosed fatty liver as well as lower blood levels of alanine transaminase (-0.025 SD, 3.7*10(-43)), alkaline phosphatase (-0.025 SD, 1.2*10(-37)), total cholesterol (-0.030 SD, p = 1.9*10(-36)) and LDL cholesterol (-0.027 SD, p = 5.1*10(-30)) levels. We identified a series of additional MARC1 alleles (low-frequency missense p.M187K and rare protein-truncating p.R200Ter) that also associated with lower cholesterol levels, liver enzyme levels and reduced risk of cirrhosis (0 cirrhosis cases for 238 R200Ter carriers versus 17,046 cases of cirrhosis among 759,027 non-carriers, p = 0.04) suggesting that deficiency of the MARC1 enzyme may lower blood cholesterol levels and protect against cirrhosis.
  • Li, Sai; Rissanen, Ilona; Zeltina, Antra; Hepojoki, Jussi; Raghwani, Jayna; Harlos, Karl; Pybus, Oliver G.; Huiskonen, Juha T.; Bowden, Thomas A. (2016)
    Hantaviruses, a geographically diverse group of zoonotic pathogens, initiate cell infection through the concerted action of Gn and Gc viral surface glycoproteins. Here, we describe the high-resolution crystal structure of the antigenic ectodomain of Gn from Puumala hantavirus (PUUV), a causative agent of hemorrhagic fever with renal syndrome. Fitting of PUUV Gn into an electron cryomicroscopy reconstruction of intact Gn-Gc spike complexes from the closely related but non-pathogenic Tula hantavirus localized Gn tetramers to the membrane-distal surface of the virion. The accuracy of the fitting was corroborated by epitope mapping and genetic analysis of available PUUV sequences. Interestingly, Gn exhibits greater non-synonymous sequence diversity than the less accessible Gc, supporting a role of the host humoral immune response in exerting selective pressure on the virus surface. The fold of PUUV Gn is likely to be widely conserved across hantaviruses.
  • Ju, Meihua; Ioannidou, Sofia; Munro, Peter; Rämö, Olli; Vihinen, Helena; Jokitalo, Eija; Shima, David T. (2020)
    Fenestrae are transcellular plasma membrane pores that mediate blood-tissue exchange in specialised vascular endothelia. The composition and biogenesis of the fenestra remain enigmatic. We isolated and characterised the protein composition of large patches of fenestrated plasma membrane, termed sieve plates. Loss-of-function experiments demonstrated that two components of the sieve plate, moesin and annexin II, were positive and negative regulators of fenestra formation, respectively. Biochemical analyses showed that moesin is involved in the formation of an actin-fodrin submembrane cytoskeleton that was essential for fenestra formation. The link between the fodrin cytoskeleton and the plasma membrane involved the fenestral pore protein PV-1 and Na,K-ATPase, which is a key regulator of signalling during fenestra formation both in vitro and in vivo. These findings provide a conceptual framework for fenestra biogenesis, linking the dynamic changes in plasma membrane remodelling to the formation of a submembrane cytoskeletal signalling complex.
  • Kort, Remco; Westerik, Nieke; Serrano, L. Mariela; Douillard, Francois P.; Gottstein, Willi; Mukisa, Ivan M.; Tuijn, Coosje J.; Basten, Lisa; Hafkamp, Bert; Meijer, Wilco C.; Teusink, Bas; de Vos, Willem M.; Reid, Gregor; Sybesma, Wilbert (2015)
    Background: The lactic acid bacterium Lactobacillus rhamnosus GG is the most studied probiotic bacterium with proven health benefits upon oral intake, including the alleviation of diarrhea. The mission of the Yoba for Life foundation is to provide impoverished communities in Africa increased access to Lactobacillus rhamnosus GG under the name Lactobacillus rhamnosus yoba 2012, world's first generic probiotic strain. We have been able to overcome the strain's limitations to grow in food matrices like milk, by formulating a dried starter consortium with Streptococcus thermophilus that enables the propagation of both strains in milk and other food matrices. The affordable seed culture is used by people in resource-poor communities. Results: We used S. thermophilus C106 as an adjuvant culture for the propagation of L. rhamnosus yoba 2012 in a variety of fermented foods up to concentrations, because of its endogenous proteolytic activity, ability to degrade lactose and other synergistic effects. Subsequently, L. rhamnosus could reach final titers of 1E+09 CFU ml(-1), which is sufficient to comply with the recommended daily dose for probiotics. The specific metabolic interactions between the two strains were derived from the full genome sequences of L. rhamnosus GG and S. thermophilus C106. The piliation of the L. rhamnosus yoba 2012, required for epithelial adhesion and inflammatory signaling in the human host, was stable during growth in milk for two rounds of fermentation. Sachets prepared with the two strains, yoba 2012 and C106, retained viability for at least 2 years. Conclusions: A stable dried seed culture has been developed which facilitates local and low-cost production of a wide range of fermented foods that subsequently act as delivery vehicles for beneficial bacteria to communities in east Africa.
  • Abdelnabi, Rana; Geraets, James A.; Ma, Yipeng; Mirabelli, Carmen; Flatt, Justin W.; Domanska, Ausra; Delang, Leen; Jochmans, Dirk; Kumar, Timiri Ajay; Jayaprakash, Venkatesan; Sinha, Barij Nayan; Leyssen, Pieter; Butcher, Sarah J.; Neyts, Johan (2019)
    Rhino- and enteroviruses are important human pathogens, against which no antivirals are available. The best-studied inhibitors are capsid binders that fit in a hydrophobic pocket of the viral capsid. Employing a new class of entero-/rhinovirus inhibitors and by means of cryo-electron microscopy (EM), followed by resistance selection and reverse genetics, we discovered a hitherto unknown druggable pocket that is formed by viral proteins VP1 and VP3 and that is conserved across entero-/rhinovirus species. We propose that these inhibitors stabilize a key region of the virion, thereby preventing the conformational expansion needed for viral RNA release. A medicinal chemistry effort resulted in the identification of analogues targeting this pocket with broad-spectrum activity against Coxsackieviruses B (CVBs) and compounds with activity against enteroviruses (EV) of groups C and D, and even rhinoviruses (RV). Our findings provide novel insights in the biology of the entry of entero-/rhinoviruses and open new avenues for the design of broad-spectrum antivirals against these pathogens.
  • Sillaste, Gerly; Kaplinski, Lauris; Meier, Riho; Jaakma, Uelle; Eriste, Elo; Salumets, Andres (2017)
    DNA compaction with protamines in sperm is essential for successful fertilization. However, a portion of sperm chromatin remains less tightly packed with histones, which genomic location and function remain unclear. We extracted and sequenced histone-associated DNA from sperm of nine ejaculates from three bulls. We found that the fraction of retained histones varied between samples, but the variance was similar between samples from the same and different individuals. The most conserved regions showed similar abundance across all samples, whereas in other regions, their presence correlated with the size of histone fraction. This may refer to gradual histone-protamine transition, where easily accessible genomic regions, followed by the less accessible regions are first substituted by protamines. Our results confirm those from previous studies that histones remain in repetitive genome elements, such as centromeres, and added new findings of histones in rRNA and SRP RNA gene clusters and indicated histone enrichment in some spermatogenesis-associated genes, but not in genes of early embryonic development. Our functional analysis revealed significant overrepresentation of cGMP-dependent protein kinase G (cGMP-PKG) pathway genes among histone-enriched genes. This pathway is known for its importance in pre-fertilization sperm events. In summary, a novel hypothesis for gradual histone-toprotamine transition in sperm maturation was proposed. We believe that histones may contribute structural information into early embryo by epigenetically modifying centromeric chromatin and other types of repetitive DNA. We also suggest that sperm histones are retained in genes needed for sperm development, maturation and fertilization, as these genes are transcriptionally active shortly prior to histone-to-protamine transition.
  • Jackson, C. B.; Bauer, M. F.; Schaller, A.; Kotzaeridou, U.; Ferrarini, A.; Hahn, D.; Chehade, H.; Barbey, F.; Tran, C.; Gallati, S.; Haeberli, A.; Eggimann, S.; Bonafe, L.; Nuoffer, J-M. (2016)
    We report a novel homozygous missense mutation in the ubiquinol-cytochrome c reductase synthesis-like (BCS1L) gene in two consanguineous Turkish families associated with deafness, Fanconi syndrome (tubulopathy), microcephaly, mental and growth retardation. All three patients presented with transitory metabolic acidosis in the neonatal period and development of persistent renal de Toni-Debr,-Fanconi-type tubulopathy, with subsequent rachitis, short stature, microcephaly, sensorineural hearing impairment, mild mental retardation and liver dysfunction. The novel missense mutation c.142A > G (p.M48V) in BCS1L is located at a highly conserved region associated with sorting to the mitochondria. Biochemical analysis revealed an isolated complex III deficiency in skeletal muscle not detected in fibroblasts. Native polyacrylamide gel electrophoresis (PAGE) revealed normal super complex formation, but a shift in mobility of complex III most likely caused by the absence of the BCS1L-mediated insertion of Rieske Fe/S protein into complex III. These findings expand the phenotypic spectrum of BCS1L mutations, highlight the importance of biochemical analysis of different primary affected tissue and underline that neonatal lactic acidosis with multi-organ involvement may resolve after the newborn period with a relatively spared neurological outcome and survival into adulthood. Conclusion: Mutation screening for BCS1L should be considered in the differential diagnosis of severe (proximal) tubulopathy in the newborn period.
  • EuroEPINOMICS-RES Consortium; GRIN Consortium; Helbig, Ingo; Lopez-Hernandez, Tania; Shor, Oded; Lehesjoki, Anna-Elina; Linnankivi, Tarja; Palotie, Aarno (2019)
    The developmental and epileptic encephalopathies (DEEs) are heterogeneous disorders with a strong genetic contribution, but the underlying genetic etiology remains unknown in a significant proportion of individuals. To explore whether statistical support for genetic etiologies can be generated on the basis of phenotypic features, we analyzed whole-exome sequencing data and phenotypic similarities by using Human Phenotype Ontology (HPO) in 314 individuals with DEEs. We identified a de novo c.508C>T (p.Arg170Trp) variant in AP2M1 in two individuals with a phenotypic similarity that was higher than expected by chance (p = 0.003) and a phenotype related to epilepsy with myoclonic-atonic seizures. We subsequently found the same de novo variant in two individuals with neurodevelopmental disorders and generalized epilepsy in a cohort of 2,310 individuals who underwent diagnostic whole-exome sequencing. AP2M1 encodes the mu-subunit of the adaptor protein complex 2 (AP-2), which is involved in clathrin-mediated endocytosis (CME) and synaptic vesicle recycling. Modeling of protein dynamics indicated that the p.Arg170Trp variant impairs the conformational activation and thermodynamic entropy of the AP-2 complex. Functional complementation of both the mu-subunit carrying the p.Arg170Trp variant in human cells and astrocytes derived from AP-2 mu conditional knockout mice revealed a significant impairment of CME of transferrin. In contrast, stability, expression levels, membrane recruitment, and localization were not impaired, suggesting a functional alteration of the AP-2 complex as the underlying disease mechanism. We establish a recurrent pathogenic variant in AP2M1 as a cause of DEEs with distinct phenotypic features, and we implicate dysfunction of the early steps of endocytosis as a disease mechanism in epilepsy.
  • Ramalingam, Nagendran; Franke, Christof; Jaschinski, Evelin; Winterhoff, Moritz; Lu, Yao; Bruehmann, Stefan; Junemann, Alexander; Meier, Helena; Noegel, Angelika A.; Weber, Igor; Zhao, Hongxia; Merkel, Rudolf; Schleicher, Michael; Faix, Jan (2015)
    Cell migration is driven by the establishment of disparity between the cortical properties of the softer front and the more rigid rear allowing front extension and actomyosin-based rear contraction. However, how the cortical actin meshwork in the rear is generated remains elusive. Here we identify the mDia1-like formin A (ForA) from Dictyostelium discoideum that generates a subset of filaments as the basis of a resilient cortical actin sheath in the rear. Mechanical resistance of this actin compartment is accomplished by actin crosslinkers and IQGAP-related proteins, and is mandatory to withstand the increased contractile forces in response to mechanical stress by impeding unproductive blebbing in the rear, allowing efficient cell migration in two-dimensional-confined environments. Consistently, ForA supresses the formation of lateral protrusions, rapidly relocalizes to new prospective ends in repolarizing cells and is required for cortical integrity. Finally, we show that ForA utilizes the phosphoinositide gradients in polarized cells for subcellular targeting.
  • Seifert, Tina; Malo, Marcus; Kokkola, Tarja; Steen, E. Johanna L.; Meinander, Kristian; Wallen, Erik A. A.; Jarho, Elina M.; Luthman, Kristina (2020)
    Sirtuins (SIRT1-SIRT7) are an evolutionary conserved family of NAD(+)-dependent protein deacylases regulating the acylation state of epsilon-N-lysine residues of proteins thereby controlling key biological processes. Numerous studies have found association of the aberrant enzymatic activity of SIRTs with various diseases like diabetes, cancer and neurodegenerative disorders. Previously, we have shown that substituted 2-alkyl-chroman-4-one/chromone derivatives can serve as selective inhibitors of SIRT2 possessing an antiproliferative effect in two human cancer cell lines. In this study, we have explored the bioisosteric replacement of the chroman-4-one/chromone core structure with different less lipophilic bicyclic scaffolds to overcome problems associated to poor physiochemical properties due to a highly lipophilic substitution pattern required for achieve a good inhibitory effect. Various new derivatives based on the quinolin-4(1H)-one scaffold, bicyclic secondary sulfonamides or saccharins were synthesized and evaluated for their SIRT inhibitory effect. Among the evaluated scaffolds, the benzothiadiazine-1,1-dioxide-based compounds showed the highest SIRT2 inhibitory activity. Molecular modeling studies gave insight into the binding mode of the new scaffold-replacement analogues.
  • Becker, Isabelle C.; Scheller, Inga; Wackerbarth, Lou M.; Beck, Sarah; Heib, Tobias; Aurbach, Katja; Manukjan, Georgi; Gross, Carina; Spindler, Markus; Nagy, Zoltan; Witke, Walter; Lappalainen, Pekka; Bender, Markus; Schulze, Harald; Pleines, Irina; Nieswandt, Bernhard (2020)
    Rearrangements of the microtubule (MT) and actin cytoskeleton are pivotal for platelet biogenesis. Hence, defects in actin- or MT-regulatory proteins are associated with platelet disorders in humans and mice. Previous studies in mice revealed that loss of the actin-depolymerizing factor homology (ADF-H) protein Cofilin1 (Cof1) in megakaryocytes (MKs) results in a moderate macrothrombocytopenia but normal MK numbers, whereas deficiency in another ADF-H protein, Twinfilin1 (Twf1), does not affect platelet production or function. However, recent studies in yeast have indicated a critical synergism between Twf1 and Cof1 in the regulation of actin dynamics. We therefore investigated platelet biogenesis and function in mice lacking both Twf1 and Cof1 in the MK lineage. In contrast to single deficiency in either protein, Twf1/Cof1 double deficiency (DKO) resulted in a severe macrothrombocytopenia and dramatically increased MK numbers in bone marrow and spleen. DKO MKs exhibited defective proplatelet formation in vitro and in vivo as well as impaired spreading and altered assembly of podosome-like structures on collagen and fibrinogen in vitro. These defects were associated with aberrant F-actin accumulation and, remarkably, the formation of hyperstable MT, which appears to be caused by dysregulation of the actin- and MT-binding proteins mDia1 and adenomatous polyposis coli. Surprisingly, the mild functional defects described for Cof1-deficient platelets were only slightly aggravated in DKO platelets suggesting that both proteins are largely dispensable for platelet function in the peripheral blood. In summary, these findings reveal critical redundant functions of Cof1 and Twf1 in ensuring balanced actin/microtubule crosstalk during thrombopoiesis in mice and possibly humans.
  • Savarese, Marco; Palmio, Johanna; Poza, Juan Jose; Weinberg, Jan; Olive, Montse; Cobo, Ana Maria; Vihola, Anna; Jonson, Per Harald; Sarparanta, Jaakko; Garcia-Bragado, Federico; Urtizberea, Jon Andoni; Hackman, Peter; Udd, Bjarne (2019)
    Objective To clinically and pathologically characterize a cohort of patients presenting with a novel form of distal myopathy and to identify the genetic cause of this new muscular dystrophy. Methods We studied 4 families (3 from Spain and 1 from Sweden) suffering from an autosomal dominant distal myopathy. Affected members showed adult onset asymmetric distal muscle weakness with initial involvement of ankle dorsiflexion later progressing also to proximal limb muscles. Results In all 3 Spanish families, we identified a unique missense variant in the ACTN2 gene cosegregating with the disease. The affected members of the Swedish family carry a different ACTN2 missense variant. Interpretation ACTN2 encodes for alpha actinin2, which is highly expressed in the sarcomeric Z-disk with a major structural and functional role. Actininopathy is thus a new genetically determined distal myopathy. ANN NEUROL 2019;85:899-906.
  • Palviainen, Mari J.; Junnikkala, Sami; Raekallio, Marja; Meri, Seppo; Vainio, Outi (2015)
  • Morais de Carvalho, Danila; Lahtinen, Maarit; Bhattarai, Mamata; Lawoko, Martin; Mikkonen, Kirsi S. (2021)
    Hemicellulose-rich wood extracts show efficient capacity to adsorb at emulsion interfaces and stabilize them. Their functionality is enhanced by lignin moieties accompanying the hemicellulose structures, in the form of lignin-carbohydrate complexes (LCCs) and, potentially, other non-covalent associations. The formation and stability of emulsions is determined by their interfacial regions. These are largely unexplored assemblies when formed from natural stabilizers with a complex chemical composition. Understanding the structure of the interfacial region could facilitate both designing the extraction processes of abundant biomasses and unraveling a valuable industrial application potential for the extracts. Herein, we characterized the LCCs from the interface of oil-in-water emulsions stabilized by galactoglucomannan (GGM) or glucuronoxylan (GX)-rich wood extracts, using two-dimensional nuclear magnetic resonance (NMR) spectroscopy analysis. The type of covalent linkage between residual lignin and hemicelluloses determined their partitioning between the continuous and interfacial emulsion phases. Benzylether structures, only found in the interface, were suggested to participate in the physical stabilization of the emulsion droplets. In turn, the phenylglycosides, preferentially observed in the continuous phase, were suggested to interact with adsorbed stabilizers by electrostatic interaction. More hydrophobic lignin structures, such as guaiacyl lignin type, dibenzodioxocin substructures, and certain end groups also contributed to droplet stabilization. The elucidation of such attributes is of paramount importance for the biorefinery industry, enabling the optimization of extraction processes for the preparation of wood-based stabilizers and designed interfaces for novel and sustainable emulsion systems.