Browsing by Subject "PROTEIN-TYROSINE-PHOSPHATASE"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Parri, Elina; Kuusanmäki, Heikki; van Adrichem, Arjan J.; Kaustio, Meri; Wennerberg, Krister (2020)
    STAT3 mediates signalling downstream of cytokine and growth factor receptors where it acts as a transcription factor for its target genes, including oncogenes and cell survival regulating genes. STAT3 has been found to be persistently activated in many types of cancers, primarily through its tyrosine phosphorylation (Y705). Here, we show that constitutive STAT3 activation protects cells from cytotoxic drug responses of several drug classes. To find novel and potentially targetable STAT3 regulators we performed a kinase and phosphatase siRNA screen with cells expressing either a hyperactive STAT3 mutant or IL6-induced wild type STAT3. The screen identified cell division cycle 7-related protein kinase (CDC7), casein kinase 2, alpha 1 (CSNK2), discoidin domain-containing receptor 2 (DDR2), cyclin-dependent kinase 8 (CDK8), phosphatidylinositol 4-kinase 2-alpha (PI4KII), C-terminal Src kinase (CSK) and receptor-type tyrosine-protein phosphatase H (PTPRH) as potential STAT3 regulators. Using small molecule inhibitors targeting these proteins, we confirmed dose and time dependent inhibition of STAT3-mediated transcription, suggesting that inhibition of these kinases may provide strategies for dampening STAT3 activity in cancers.
  • Pehkonen, Henna; von Nandelstadh, Pernilla; Karhemo, Piia-Riitta; Lepikhova, Tatiana; Grenman, Reidar; Lehti, Kaisa; Monni, Outi (2016)
    PPFIA1 is located at the 11q13 region, which is one of the most commonly amplified regions in several epithelial cancers including head and neck squamous cell carcinoma and breast carcinoma. Considering the location of PPFIA1 in this amplicon, we examined whether protein encoded by PPFIA1, liprin-alpha 1, possesses oncogenic properties in relevant carcinoma cell lines. Our results indicate that liprin-alpha 1 localizes to different adhesion and cytoskeletal structures to regulate vimentin intermediate filament network, thereby altering the invasion and growth properties of the cancer cells. In non-invasive cells liprin-alpha 1 promotes expansive growth behavior with limited invasive capacity, whereas in invasive cells liprin-alpha 1 has significant impact on mesenchymal cancer cell invasion in three-dimensional collagen. Current results identify liprin-a1 as a novel regulator of the tumor cell intermediate filaments with differential oncogenic properties in actively proliferating or motile cells.
  • Pehkonen, Henna; de Curtis, Ivan; Monni, Outi (2021)
    Liprins are a multifunctional family of scaffold proteins, identified by their involvement in several important neuronal functions related to signaling and organization of synaptic structures. More recently, the knowledge on the liprin family has expanded from neuronal functions to processes relevant to cancer progression, including cell adhesion, cell motility, cancer cell invasion, and signaling. These proteins consist of regions, which by prediction are intrinsically disordered, and may be involved in the assembly of supramolecular structures relevant for their functions. This review summarizes the current understanding of the functions of liprins in different cellular processes, with special emphasis on liprins in tumor progression. The available data indicate that liprins may be potential biomarkers for cancer progression and may have therapeutic importance.
  • Yadav, Leena; Pietilä, Elina; Öhman, Tiina; Liu, Xiaonan; Mahato, Arun K.; Sidorova, Yulia; Lehti, Kaisa; Saarma, Mart; Varjosalo, Markku (2020)
    The RET proto-oncogene encodes receptor tyrosine kinase, expressed primarily in tissues of neural crest origin. De-regulation of RET signaling is implicated in several human cancers. Recent phosphatome interactome analysis identified PTPRA interacting with the neurotrophic factor (GDNF)-dependent RET-Ras-MAPK signaling-axis. Here, by identifying comprehensive interactomes of PTPRA and RET, we reveal their close physical and functional association. The PTPRA directly interacts with RET, and using the phosphoproteomic approach, we identify RET as a direct dephosphorylation substrate of PTPRA both in vivo and in vitro. The protein phosphatase domain-1 is indispensable for the PTPRA inhibitory role on RET activity and downstream Ras-MAPK signaling, whereas domain-2 has only minor effect. Furthermore, PTPRA also regulates the RET oncogenic mutant variant MEN2A activity and invasion capacity, whereas the MEN2B is insensitive to PTPRA. In sum, we discern PTPRA as a novel regulator of RET signaling in both health and cancer.