Browsing by Subject "PROTEINS"

Sort by: Order: Results:

Now showing items 1-20 of 125
  • Jylhava, Juulia; Lyytikainen, Leo-Pekka; Kahonen, Mika; Hutri-Kahonen, Nina; Kettunen, Johannes; Viikari, Jorma; Raitakari, Olli T.; Lehtimaki, Terho; Hurme, Mikko (2012)
  • Hitti-Malin, Rebekkah J.; Burmeister, Louise M.; Lingaas, Frode; Kaukonen, Maria; Pettinen, Inka; Lohi, Hannes; Sargan, David; Mellersh, Cathryn S. (2021)
    Canine progressive retinal atrophy (PRA) describes a group of hereditary diseases characterized by photoreceptor cell death in the retina, leading to visual impairment. Despite the identification of multiple PRA-causing variants, extensive heterogeneity of PRA is observed across and within dog breeds, with many still genetically unsolved. This study sought to elucidate the causal variant for a distinct form of PRA in the Shetland sheepdog, using a whole-genome sequencing approach. Filtering variants from a single PRA-affected Shetland sheepdog genome compared to 176 genomes of other breeds identified a single nucleotide variant in exon 11 of the Bardet-Biedl syndrome-2 gene (BBS2) (c.1222G > C; p.Ala408Pro). Genotyping 1386 canids of 155 dog breeds, 15 cross breeds and 8 wolves indicated the c.1222G > C variant was only segregated within Shetland sheepdogs. Out of 505 Shetland sheepdogs, seven were homozygous for the variant. Clinical history and photographs for three homozygotes indicated the presence of a novel phenotype. In addition to PRA, additional clinical features in homozygous dogs support the discovery of a novel syndromic PRA in the breed. The development and utilization of a diagnostic DNA test aim to prevent the mutation from becoming more prevalent in the breed.
  • Salo, Tuula; Sutinen, Meeri; Apu, Ehsanul Hoque; Sundquist, Elias; Cervigne, Nilva K.; de Oliveira, Carine Ervolino; Akram, Saad Ullah; Ohlmeier, Steffen; Suomi, Fumi; Eklund, Lauri; Juusela, Pirjo; Astrom, Pirjo; Bitu, Carolina Cavalcante; Santala, Markku; Savolainen, Kalle; Korvala, Johanna; Paes Leme, Adriana Franco; Coletta, Ricardo D. (2015)
    Background: The composition of the matrix molecules is important in in vitro cell culture experiments of e.g. human cancer invasion and vessel formation. Currently, the mouse Engelbreth-Holm-Swarm (EHS) sarcoma -derived products, such as Matrigel (R), are the most commonly used tumor microenvironment (TME) mimicking matrices for experimental studies. However, since Matrigel (R) is non-human in origin, its molecular composition does not accurately simulate human TME. We have previously described a solid 3D organotypic myoma disc invasion assay, which is derived from human uterus benign leiomyoma tumor. Here, we describe the preparation and analyses of a processed, gelatinous leiomyoma matrix, named Myogel. Methods: A total protein extract, Myogel, was formulated from myoma. The protein contents of Myogel were characterized and its composition and properties compared with a commercial mouse Matrigel (R). Myogel was tested and compared to Matrigel (R) in human cell adhesion, migration, invasion, colony formation, spheroid culture and vessel formation experiments, as well as in a 3D hanging drop video image analysis. Results: We demonstrated that only 34 % of Myogel's molecular content was similar to Matrigel (R). All test results showed that Myogel was comparable with Matrigel (R), and when mixed with low-melting agarose (Myogel-LMA) it was superior to Matrigel (R) in in vitro Transwell (R) invasion and capillary formation assays. Conclusions: In conclusion, we have developed a novel Myogel TME matrix, which is recommended for in vitro human cell culture experiments since it closely mimics the human tumor microenvironment of solid cancers.
  • Konttinen, Y T; Mandelin, J; Li, T F; Salo, J; Lassus, J; Liljestrom, M; Hukkanen, M; Takagi, M; Virtanen, I; Santavirta, S (2002)
  • Kontturi, Miia; Junni, Reijo; Kujala-Wirth, Minna; Malinen, Erja; Seuna, Eija; Pelkonen, Sinikka; Soveri, Timo; Simojoki, Heli (2020)
    Several Finnish dairy herds have suffered from outbreaks of interdigital phlegmon (IP). In these new types of outbreaks, morbidity was high and clinical signs severe, resulting in substantial economic losses for affected farms. In our study, we visited 18 free stall dairy herds experiencing an outbreak of IP and 3 control herds without a similar outbreak. From a total of 203 sampled cows, 60 suffered from acute stage IP. We demonstrated that acute phase response of bovine IP was evident and therefore an appropriate analgesic should be administered in the treatment of affected animals. The response was most apparent in herds with high morbidity in IP and with a bacterial infection comprising Fusobacterium necrophorum and Dichelobacter nodosus, indicating that combination of these two bacterial species affect the severity of the disease.
  • Sabet, Saman; Kirjoranta, Satu; Lampi, Anna-Maija; Lehtonen, Mari; Pulkkinen, Elli Eva; Valoppi, Fabio (2022)
    The interest on the digestive fate of oleogels, i.e., substitutes for solid fats rich in liquid oil, have pushed re-searchers to use the widely adopted INFOGEST protocol for static in vitro digestion. However, this protocol was originally designed to simulate the digestibility of conventional foods and to accommodate the large fraction of oil in oleogels, researchers have deliberately modified the INFOGEST protocol, inadvertently leading to results difficult to be compared. In this study, we highlighted possible problems that may arise during oleogel simulated digestion such as under-or overestimation of oleogel lipolysis. The effect of oleogel amount, oleogelator type and concentration, and shear applied during digestion on the rate and extent of oleogel digestion was studied. The release of fatty acids during the application of INFOGEST protocol was monitored using the pH-stat method and compared to those analyzed by HPLC-ELSD. Oleogels' structural information was obtained using brightfield, polarized, and fluorescence microscopy, and DSC. We determined that lipolysis of ethylcellulose oleogels follow the "interaction with enzymes and bile salts " pattern, whereas that of wax oleogels follow the "disintegration of oleogel and interaction with enzymes and bile salts ". We also observed that the chemical composition of wax, crystal morphology, and crystal distribution do not alter the lipolysis of oil entrapped inside the wax crystals. We finally recommended a few minimal but fundamental modifications to the INFOGEST protocol to achieve more reliable results from the static in vitro digestion of oleogels and possibly other lipid-based systems.
  • Zhang, Yuezhou; Jumppanen, Antti Mikael; Maksimainen, Mirko M.; Auno, Atte Samuli; Awol , Zulfa; Ghemtio, Leo; Venkannagari, Harikanth; Lehtiö, Lari; Yli-Kauhaluoma, Jari; Xhaard, Henri; Boije af Gennäs, Gustav (2018)
    The human O-acetyl-ADP-ribose deacetylase MDO1 is a mono-ADP-ribosylhydrolase involved in the reversal of post-translational modifications. Until now MDO1 has been poorly characterized, partly since no ligand is known besides adenosine nucleotides. Here, we synthesized thirteen compounds retaining the adenosine moiety and bearing bioisosteric replacements of the phosphate at the ribose 50-oxygen. These compounds are composed of either a squaryldiamide or an amide group as the bioisosteric replacement and/or as a linker. To these groups a variety of substituents were attached such as phenyl, benzyl, pyridyl, carboxyl, hydroxy and tetrazolyl. Biochemical evaluation showed that two compounds, one from both series, inhibited ADP-ribosyl hydrolysis mediated by MDO1 in high concentrations. (C) 2018 Elsevier Ltd. All rights reserved.
  • Romano, Roberta; Rivellini, Cristina; De Luca, Maria; Tonlorenzi, Rossana; Beli, Raffaella; Manganelli, Fiore; Nolano, Maria; Santoro, Lucio; Eskelinen, Eeva-Liisa; Previtali, Stefano C.; Bucci, Cecilia (2021)
    The small GTPase RAB7A regulates late stages of the endocytic pathway and plays specific roles in neurons, controlling neurotrophins trafficking and signaling, neurite outgrowth and neuronal migration. Mutations in the RAB7A gene cause the autosomal dominant Charcot-Marie-Tooth type 2B (CMT2B) disease, an axonal peripheral neuropathy. As several neurodegenerative diseases are caused by alterations of endocytosis, we investigated whether CMT2B-causing mutations correlate with changes in this process. To this purpose, we studied the endocytic pathway in skin fibroblasts from healthy and CMT2B individuals. We found higher expression of late endocytic proteins in CMT2B cells compared to control cells, as well as higher activity of cathepsins and higher receptor degradation activity. Consistently, we observed an increased number of lysosomes, accompanied by higher lysosomal degradative activity in CMT2B cells. Furthermore, we found increased migration and increased RAC1 and MMP-2 activation in CMT2B compared to control cells. To validate these data, we obtained sensory neurons from patient and control iPS cells, to confirm increased lysosomal protein expression and lysosomal activity in CMT2B-derived neurons. Altogether, these results demonstrate that in CMT2B patient-derived cells, the endocytic degradative pathway is altered, suggesting that higher lysosomal activity contributes to neurodegeneration occurring in CMT2B.
  • Colecchia, D; Stasi, M; Leonardi, M; Manganelli, F; Nolano, M; Veneziani, BM; Santoro, L; Eskelinen, Eeva-Liisa; Chiariello, M; Bucci, Cecilia (2018)
    Charcot-Marie-Tooth type 2B (CMT2B) disease is a dominant axonal peripheral neuropathy caused by 5 mutations in the RAB7A gene, a ubiquitously expressed GTPase controlling late endocytic trafficking. In neurons, RAB7A also controls neuronal-specific processes such as NTF (neurotrophin) trafficking and signaling, neurite outgrowth and neuronal migration. Given the involvement of macroautophagy/autophagy in several neurodegenerative diseases and considering that RAB7A is fundamental for autophagosome maturation, we investigated whether CMT2B-causing mutants affect the ability of this gene to regulate autophagy. In HeLa cells, we observed a reduced localization of all CMT2B-causing RAB7A mutants on autophagic compartments. Furthermore, compared to expression of RAB7AWT, expression of these mutants caused a reduced autophagic flux, similar to what happens in cells expressing the dominant negative RAB7AT22N mutant. Consistently, both basal and starvation-induced autophagy were strongly inhibited in skin fibroblasts from a CMT2B patient carrying the RAB7AV162M mutation, suggesting that alteration of the autophagic flux could be responsible for neurodegeneration.
  • Hanski, Leena; Ausbacher, Dominik; Tiirola, Terttu M.; Strom, Morten B.; Vuorela, Pia M. (2016)
    We demonstrate in the current work that small cationic antimicrobial beta(2,2)-amino acid derivatives (Mw <500 Da) are highly potent against Chlamydia pneumoniae at clinical relevant concentrations (<5 mu M, i.e. <3.4 mu g/mL). C. pneumoniae is an atypical respiratory pathogen associated with frequent treatment failures and persistent infections. This gram-negative bacterium has a biphasic life cycle as infectious elementary bodies and proliferating reticulate bodies, and efficient treatment is challenging because of its long and obligate intracellular replication cycle within specialized inclusion vacuoles. Chlamydicidal effect of the beta(2,2)-amino acid derivatives in infected human epithelial cells was confirmed by transmission electron microscopy. Images of infected host cells treated with our lead derivative A2 revealed affected chlamydial inclusion vacuoles 24 hours post infection. Only remnants of elementary and reticulate bodies were detected at later time points. Neither the EM studies nor resazurin-based cell viability assays showed toxic effects on uninfected host cells or cell organelles after A2 treatment. Besides the effects on early intracellular inclusion vacuoles, the ability of these beta(2,2)-amino acid derivatives to suppress Chlamydia pneumoniae infectivity upon treatment of elementary bodies suggested also a direct interaction with bacterial membranes. Synthetic beta(2,2)-amino acid derivatives that target C. pneumoniae represent promising lead molecules for development of antimicrobial agents against this hard-totreat intracellular pathogen.
  • Li, Shiqian; Prasanna, Xavier; Salo, Veijo T.; Vattulainen, Ilpo; Ikonen, Elina (2019)
    Auxin-inducible degron technology allows rapid and controlled protein depletion. However, basal degradation without auxin and inefficient auxin-inducible depletion have limited its utility. We have identified a potent auxin-inducible degron system composed of auxin receptor F-box protein AtAFB2 and short degron minilAA7. The system showed minimal basal degradation and enabled rapid auxin-inducible depletion of endogenous human transmembrane, cytoplasmic and nuclear proteins in 1 h with robust functional phenotypes.
  • Wang, Xin; Ye, Lingling; Lyu, Munan; Ursache, Robertas; Löytynoja, Ari; Mähönen, Ari Pekka (2020)
    Conditional manipulation of gene expression is a key approach to investigating the primary function of a gene in a biological process. While conditional and cell-type-specific overexpression systems exist for plants, there are currently no systems available to disable a gene completely and conditionally. Here, we present a new tool with which target genes can efficiently and conditionally be knocked out by genome editing at any developmental stage. Target genes can also be knocked out in a cell-type-specific manner. Our tool is easy to construct and will be particularly useful for studying genes having null alleles that are non-viable or show pleiotropic developmental defects.
  • Rooijers, Koos; Kolmeder, Carolin; Juste, Catherine; Dore, Joel; de Been, Mark; Boeren, Sjef; Galan, Pilar; Beauvallet, Christian; de Vos, Willem M.; Schaap, Peter J. (2011)
  • Eskelin , Katri; Lampi, Mirka; Coustau, Christine; Imani, Jafargholi; Kogel, Karl-Heinz; Poranen, Minna (2022)
    Robust RNA purification and analysis methods are required to support the development of RNA vaccines and therapeutics as well as RNA interference-based crop protection solutions. Asymmetrical flow field -flow fractionation (AF4) is a gentle native purification method that applies liquid flows to separate sample components based on their hydrodynamic sizes. We recently showed that AF4 can be utilized to separate RNA molecules that are shorter than 110 nucleotides (nt), but the performance of AF4 in the analysis and purification of longer RNA molecules has not been previously evaluated. Here, we studied the perfor-mance of AF4 in separation of single-stranded (ss) and double-stranded (ds) RNA molecules in the size range of 75-6400 nt. In addition, we evaluated the power of AF4 coupling to different detectors, allow-ing separation to be combined with data collection on yield as well as molecular weight ( MW ) and size distribution. We show that AF4 method is applicable in RNA purification, quality control, and analytics, and results in good recoveries of ssRNA and dsRNA molecules. In addition, our results demonstrate the utility of AF4 multidetection platforms to study biophysical properties of long RNA molecules.(c) 2022 The Author(s). Published by Elsevier B.V.This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
  • Liu, Mengxia; Wang, Kai; Haapanen, Matti; Ghimire, Rajendra P. P.; Kivimaenpaa, Minna; Asiegbu, Fred O. O. (2022)
    Root and stem rot caused by Heterobasidion annosum is a severe problem in boreal Scots pine. Dissecting the features of disease resistance is generally an essential step in resistance breeding in plants and forest trees. In this study, we explored inherent resistance factors of Scots pine against H. annosum. A total of 236 families consisting of 85 full-sib (FS), 35 half-sib population mix (HSpm), and 116 half-sib (HS) families of Scots pine seedlings were inoculated with a H. annosum isolate. We sampled needle tissues before inoculation for terpene measurements and RNA sequencing. Based on the lesion area, the extremes of 12 resistant and 12 susceptible families were selected for further analyses. Necrotic lesions resulting from fungal infection were in a weak to moderate relationship with the plant height. Monoterpenes were the principal terpene compounds observed in Scots pine seedlings. Concentrations of 3-carene were significantly higher in pine genotypes inherently resistant compared with susceptible seedlings. By contrast, susceptible genotypes had significantly higher proportions of alpha-pinene. Gene ontology analysis of differential expressed transcripts (DETs) revealed that response to biotic factors was enriched in resistant seedlings. Functional characterization of individual DETs revealed that higher expression of transcripts involved in response to abiotic stress was common in susceptible genotypes. This observation was supported by the annotation of hub genes in a key module that was significantly correlated with the lesion trait through weighted gene co-expression network analysis (WGCNA) of 16 HS and HSpm samples. These findings contribute to our understanding of constitutive resistance factors of Scots pine against Heterobasidion root and stem rot diseases.
  • Levanova, Alesia; Poranen, Minna Marjetta (2018)
    Steric exclusion chromatography (SXC) is a method for separation of large target solutes based on their association with a hydrophilic stationary phase through mutual steric exclusion of polyethylene glycol (PEG). Selectivity in SXC is determined by the size or shape (or both) of the solutes alongside the size and concentration of PEG molecules. Elution is achieved by decreasing the PEG concentration. In this study, SXC applicability for the separation and purification of single-stranded (ss) and double-stranded (ds) RNA molecules was evaluated for the first time. The retention of ssRNA and dsRNA molecules of different lengths on convective interaction media (CIM) monolithic columns was systematically studied under variable PEG-6000 and NaCl concentrations. We determined that over 90% of long ssRNAs (700-6374 nucleotides) and long dsRNAs (500-6374 base pairs) are retained on the stationary phase in 15% PEG-6000 and >= 0.4 M NaCl. dsDNA and dsRNA molecules of the same length were partially separated by SXC. Separation of RNA molecules below 100 nucleotides from longer RNA species is easily achieved by SXC. Furthermore, SXC has the potential to separate dsRNAs from ssRNAs of the same length. We also demonstrated that SXC is suitable for the enrichment of ssRNA (PRR1 bacteriophage) and dsRNA (Phi6 bacteriophage) viral genomes from contaminating cellular RNA species. In summary, SXC on CIM monolithic columns is an appropriate tool for rapid RNA separation and concentration. (C) 2018 The Authors. Published by Elsevier B.V.
  • Melicher, Pavol; Dvorak, Petr; Krasylenko, Yuliya; Shapiguzov, Alexey; Kangasjärvi, Jaakko; Samaj, Jozef; Takac, Tomas (2022)
    Iron superoxide dismutase 1 (FSD1) was recently characterized as a plastidial, cytoplasmic, and nuclear enzyme with osmoprotective and antioxidant functions. However, the current knowledge on its role in oxidative stress tolerance is ambiguous. Here, we characterized the role of FSD1 in response to methyl viologen (MV)-induced oxidative stress in Arabidopsis thaliana. In accordance with the known regulation of FSD1 expression, abundance, and activity, the findings demonstrated that the antioxidant function of FSD1 depends on the availability of Cu2+ in growth media. Arabidopsis fsdl mutants showed lower capacity to decompose superoxide at low Cu2+ concentrations in the medium. Prolonged exposure to MV led to reduced ascorbate levels and higher protein carbonylation in fsdl mutants and transgenic plants lacking a plastid FSD1 pool as compared to the wild type. MV induced a rapid increase in FSD1 activity, followed by a decrease after 4 h long exposure. Genetic disruption of FSD1 negatively affected the hydrogen peroxide-decomposing ascorbate peroxidase in fsdl mutants. Chloroplastic localization of FSD1 is crucial to maintain redox homeostasis. Proteomic analysis showed that the sensitivity of fsd1 mutants to MV coincided with decreased abundances of ferredoxin and photosystem II light-harvesting complex proteins. These mutants have higher levels of chloroplastic proteases indicating an altered protein turnover in chloroplasts. Moreover, FSD1 disruption affects the abundance of proteins involved in the defense response. Collectively, the study provides evidence for the conditional antioxidative function of FSD1 and its possible role in signaling.
  • Myllymaki, Satu-Marja; Kämäräinen, Ulla-Reetta; Liu, Xiaonan; Cruz, Sara Pereira; Miettinen, Sini; Vuorela, Mikko; Varjosalo, Markku; Manninen, Aki (2019)
    Integrin-mediated laminin adhesions mediate epithelial cell anchorage to basement membranes and are critical regulators of epithelial cell polarity. Integrins assemble large multiprotein complexes that link to the cytoskeleton and convey signals into the cells. Comprehensive proteomic analyses of actin network-linked focal adhesions (FA) have been performed, but the molecular composition of intermediate filament-linked hemidesmosomes (HD) remains incompletely characterized. Here we have used proximity-dependent biotin identification (BioID) technology to label and characterize the interactome of epithelia-specific beta 4-integrin that, as alpha 6 beta 4-heterodimer, forms the core of HDs. The analysis identified similar to 150 proteins that were specifically labeled by BirA-tagged integrin-beta 4. In addition to known HDs proteins, the interactome revealed proteins that may indirectly link integrin-beta 4 to actin-connected protein complexes, such as FAs and dystrophin/dystroglycan complexes. The specificity of the screening approach was validated by confirming the HD localization of two candidate beta 4-interacting proteins, utrophin (UTRN) and ELKS/Rab6-interacting/CAST family member 1 (ERC1). Interestingly, although establishment of functional HDs depends on the formation of alpha 6 beta 4-heterodimers, the assembly of beta 4-interactome was not strictly dependent on alpha 6-integrin expression. Our survey to the HD interactome sets a precedent for future studies and provides novel insight into the mechanisms of HD assembly and function of the beta 4-integrin.
  • Rebbeck, Timothy R.; Mitra, Nandita; Wan, Fei; Sinilnikova, Olga M.; Healey, Sue; McGuffog, Lesley; Mazoyer, Sylvie; Chenevix-Trench, Georgia; Easton, Douglas F.; Antoniou, Antonis C.; Nathanson, Katherine L.; CIMBA Consortium; Nevanlinna, Heli; Aittomäki, Kristiina (2015)
    IMPORTANCE Limited information about the relationship between specific mutations in BRCA1 or BRCA2 (BRCA1/2) and cancer risk exists. OBJECTIVE To identify mutation-specific cancer risks for carriers of BRCA1/2. DESIGN, SETTING, AND PARTICIPANTS Observational study of women who were ascertained between 1937 and 2011 (median, 1999) and found to carry disease-associated BRCA1 or BRCA2 mutations. The international sample comprised 19 581 carriers of BRCA1 mutations and 11 900 carriers of BRCA2 mutations from 55 centers in 33 countries on 6 continents. We estimated hazard ratios for breast and ovarian cancer based on mutation type, function, and nucleotide position. We also estimated RHR, the ratio of breast vs ovarian cancer hazard ratios. A value of RHR greater than 1 indicated elevated breast cancer risk; a value of RHR less than 1 indicated elevated ovarian cancer risk. EXPOSURES Mutations of BRCA1 or BRCA2. MAIN OUTCOMES AND MEASURES Breast and ovarian cancer risks. RESULTS Among BRCA1 mutation carriers, 9052 women (46%) were diagnosed with breast cancer, 2317(12%) with ovarian cancer, 1041 (5%) with breast and ovarian cancer, and 7171 (37%) without cancer. Among BRCA2 mutation carriers, 6180 women (52%) were diagnosed with breast cancer, 682(6%) with ovarian cancer, 272(2%) with breast and ovarian cancer, and 4766 (40%) without cancer. In BRCA1, we identified 3 breast cancer cluster regions (BCCRs) located at c.179 to c.505 (BCCR1; RHR = 1.46; 95% Cl, 1.22-1.74; P = 2 x 10(-6)), c.4328 to c.4945 (BCCR2; RH R = 1.34; 95% Cl, 1.01-1.78; P =.04), and c. 5261 to c.5563 (BCCR2', RHR = 1.38; 95% Cl, 1.22-1.55; P = 6 x 10(-9)). We also identified an ovarian cancer cluster region (OCCR) from c.1380 to c.4062 (approximately exon 11) with RHR = 0.62 (95% Cl, 0.56-0.70; P = 9 x 10(-17)). In BRCA2, we observed multiple BCCRs spanning c.1 to c.596 (BCCR1; RHR = 1.71; 95% Cl, 1.06-2.78; P =.03), c.772 to c.1806 (BCCRI; RHR = 1.63; 95% Cl, 1.10-2.40; P =.01), and c.7394 to c.8904 (BCCR2; RHR = 2.31; 95% Cl, 1.69-3.16; P =.00002). We also identified 3 OCCRs: the first (OCCR1) spanned c.3249 to c.5681 that was adjacent to c.5946delT (6174delT; RHR = 0.51; 95% Cl, 0.44-0.60; P = 6 x 10(-17)). The second OCCR spanned c.6645 to c.7471 (OCCR2; RHR = 0.57; 95% Cl, 0.41-0.80; P =.001). Mutations conferring nonsense-mediated decay were associated with differential breast or ovarian cancer risks and an earlier age of breast cancer diagnosis for both BRCA1 and BRCA2 mutation carriers. CONCLUSIONS AND RELEVANCE Breast and ovarian cancer risks varied by type and location of BRCA1/2 mutations. With appropriate validation, these data may have implications for risk assessment and cancer prevention decision making for carriers of BRCA1 and BRCA2 mutations.