Browsing by Subject "PUUMALA-HANTAVIRUS"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Charbonnel, Nathalie; Pages, Marie; Sironen, Tarja; Henttonen, Heikki; Vapalahti, Olli; Mustonen, Jukka; Vaheri, Antti (2014)
  • Hepojoki, Jussi; Vaheri, Antti; Strandin, Tomas (2014)
  • Reijniers, Jonas; Tersago, Katrien; Borremans, Benny; Hartemink, Nienke; Voutilainen, Liina; Henttonen, Heikki; Leirs, Herwig (2020)
    For wildlife diseases, one often relies on host density to predict host infection prevalence and the subsequent force of infection to humans in the case of zoonoses. Indeed, if transmission is mainly indirect, i.e., by way of the environment, the force of infection is expected to increase with host density, yet the laborious field data supporting this theoretical claim are often absent. Hantaviruses are among those zoonoses that have been studied extensively over the past decades, as they pose a significant threat to humans. In Europe, the most widespread hantavirus is the Puumala virus (PUUV), which is carried by the bank vole and causes nephropathia epidemica (NE) in humans. Extensive field campaigns have been carried out in Central Finland to shed light on this supposed relationship between bank vole density and PUUV prevalence and to identify other drivers for the infection dynamics. This resulted in the surprising observation that the relationship between bank vole density and PUUV prevalence is not purely monotonic on an annual basis, contrary to what previous models predicted: a higher vole density does not necessary result in a higher infection prevalence, nor in an increased number of humans reported having NE. Here, we advance a novel individual-based spatially-explicit model which takes into account the immunity provided by maternal antibodies and which simulates the spatial behavior of the host, both possible causes for this discrepancy that were not accounted for in previous models. We show that the reduced prevalence in peak years can be attributed to transient immunity, and that the density-dependent spatial vole behavior, i.e., the fact that home ranges are smaller in high density years, plays only a minor role. The applicability of the model is not limited to the study and prediction of PUUV (and NE) occurrence in Europe, as it could be easily adapted to model other rodent-borne diseases, either with indirect or direct transmission.
  • Grzybek, Maciej; Tolkacz, Katarzyna; Sironen, Tarja; Mäki, Sanna; Alsarraf, Mohammed; Behnke-Borowczyk, Jolanta; Biernat, Beata; Nowicka, Joanna; Vaheri, Antti; Henttonen, Heikki; Behnke, Jerzy M.; Bajer, Anna (2020)
    Simple Summary Wild rodents constitute a significant threat to public health. We tested 77 voles from northeastern Poland for the presence of antibodies to hantaviruses, arenaviruses and cowpox viruses. We report 18.2% overall seroprevalence of zoonotic viruses. Our results contribute to knowledge about the role of Polish voles as possible reservoirs of viral infections. Rodents are known to be reservoir hosts for a plethora of zoonotic viruses and therefore play a significant role in the dissemination of these pathogens. We trapped three vole species (Microtus arvalis, Alexandromys oeconomus and Microtus agrestis) in northeastern Poland, all of which are widely distributed species in Europe. Using immunofluorescence assays, we assessed serum samples for the presence of antibodies to hantaviruses, arenaviruses and cowpox viruses (CPXV). We detected antibodies against CPXV and Puumala hantavirus (PUUV), the overall seroprevalence of combined viral infections being 18.2% [10.5-29.3] and mostly attributed to CPXV. We detected only one PUUV/TULV cross-reaction in Microtus arvalis (1.3% [0.1-7.9]), but found similar levels of antibodies against CPXV in all three vole species. There were no significant differences in seroprevalence of CPXV among host species and age categories, nor between the sexes. These results contribute to our understanding of the distribution and abundance of CPXV in voles in Europe, and confirm that CPXV circulates also in Microtus and Alexandromys voles in northeastern Poland.