Browsing by Subject "Paleomagnetism"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Klein, R.; Salminen, Johanna; Mertanen, S. (2015)
    We present a new Late Neoproterozoic paleomagnetic pole for Baltica from an inclined 272 m deep oriented sedimentary drill core in Hailuoto, Western Finland. The depositional age of the Hailuoto sediments is poorly constrained at 570-600 Ma. Three components of magnetization were isolated with thermal and alternating field (AF) demagnetization treatments. The ChRM (characteristic remanence magnetization) component is a high coercivity/unblocking temperature dual polarity component that passes a reversal test. The combined observed ChRM component of the Hailuoto sediments (D = 334.2 degrees; I = 44.4 degrees; alpha(95) = 7 2; k = 16.5) yields a paleomagnetic pole of Plat = 48.7 degrees N and Plon = 241.1 degrees E with A95 = 8.1 degrees. The inclination corrected direction (f = 0.6) of D = 334.4 degrees; I = 57.7 degrees; alpha(95) = 5.8 degrees; k = 25.2 yields a paleomagnetic pole of Plat = 60.5 degrees N and Plon = 247.9 degrees E with A95 = 7.6 degrees. As it is a dual-polarity ChRM carried by both magnetite and hematite, with no resemblance to younger events, we interpret it as a primary component. A paleolatitude for Hailuoto of 383 was calculated from the ChRM. Two secondary components were identified. The first is a low coercivity/blocking temperature component with a remanent magnetization of D = 239.0 degrees; I = 67.3 degrees; alpha(95) = 8.7 degrees (N = 13 samples), which we interpret as drilling-induced remanent magnetization (DIRM). The second secondary component has a remanent magnetization of D = 49.4 degrees; I = 34.9 degrees; alpha(95) = 8.6 degrees (N = 5 samples) and is commonly seen in Fennoscandian formations. The ChRM Hailuoto pole adds to the scattered Ediacaran paleomagnetic data of Baltica and indicate large distances between other late Neoproterozoic and early Cambrian paleomagnetic poles. We present reconstructions of Baltica and Laurentia between 616 and 550 Ma which move Baltica from high latitudes (615 Ma), over the polar region, to low latitudes (550 Ma), and Laurentia from low latitudes (615 Ma) to a polar position (570 Ma) and back to an equatorial position (550 Ma). A low to mid latitude position of Baltica determined by the Hailuoto paleomagnetic pole, and the lack of glaciogenic sediments determined in an earlier study of Hailuoto sediments indicate a warm deposition environment. (C) 2015 Elsevier B.V. All rights reserved.
  • Rolf, T.; Pesonen, L. J. (2018)
    Paleomagnetism is a key method to reconstruct the Earth's paleogeography and thus essential for understanding tectonic evolution, but it assumes that the Earth's magnetic field structure has always averaged to a geocentric axial dipole (GAD). The GAD hypothesis may be tested using the observed inclination frequency distribution, but only if continents sampled all of the Earth's latitudes uniformly, which is not known. Here, we provide new insight into the uniform sampling problem by employing a suite of 3D spherical mantle convection models that feature the self-consistent evolution of mantle convection, plate tectonics and continental drift over timescales of 2 Gyr or more. Our results suggest that continents unlikely sampled latitudes uniformly during the Phanerozoic, consistent with previous suggestions. This finding is robust for a variety of geodynamic evolutions with different mantle and lithosphere structures, at least in the absence of true polar wander. For longer sampling durations, uniform sampling typically becomes more feasible, but may only be achieved with confidence after time scales of minimum 1.3 Gyr. This time scale depends on the structure of the mantle and lithosphere and may be shortest when upper mantle viscosity is small such that reduced resistive drag at the cratonic base allows for faster continental drift. Weak plates (low plastic yield strength) promote more dispersed continent configurations, which tends to facilitate uniform sampling. If these conditions are not met, the uniform sampling time scale can easily exceed several billion years. Even the minimum estimate of 1.3 Gyr challenges the validity of using the Phanerozoic inclination frequency distribution to infer the past average magnetic field structure; the approach could however still be applicable using the Precambrian inclination record. (C) 2018 Elsevier B.V. All rights reserved.
  • Gong, Zheng; Evans, David A. D.; Elming, Sten-Åke; Söderlund, Ulf; Salminen, Johanna M. (2018)
  • Luoto, Toni; Salminen, Johanna; Obst, Karsten (2021)
    Baltica and Laurentia form the core of the hypothesized Mesoproterozoic supercontinent Nuna in most paleogeographical reconstructions. Long gaps still exist in the Mesoproterozoic paleomagnetic record of Baltica, and different relative configurations for Baltica and Laurentia have been presented. This study presents new paleomagnetic data obtained for mafic dykes on Bornholm (Denmark, southwest Baltica). We provide a new 1.326 +/- 0.010 Ga Bornholm Group I paleomagnetic key pole (Plat: 06 degrees N, Plon: 165 degrees E, K: 21, A95: 6 degrees) for Baltica. This pole supports the low-latitude equatorial core of Nuna at 1.33 Ga, where Kola Peninsula and Northern Norway of Baltica were facing northeastern Greenland of Laurentia. Based on statistically different magnetization directions with Group I and differences in Nb-Zr-Y systematics, we propose a separate Bornholm Group II paleomagnetic pole. This undated, poor-quality pole indicates a paleolatitude of ca. 50 degrees, possibly reflecting an age difference compared to Group I, accompanied with the continental drift. On Bornholm, the wide Listed and Kas dykes of uncertain age yield significantly different paleomagnetic results compared to the other studied dykes there. In addition, the virtual geomagnetic poles (VGPs) of these dykes are 45 degrees apart from each other. On the basis of similar Nb-Zr-Y systematics with the dykes of the 0.98-0.94 Ga Blekinge Dalarna Dolerite Group (Sweden) and overlapping paleomagnetic data with the high-quality 0.95-0.94 Ga paleomagnetic poles of Baltica, an early Neoproterozoic age for the magnetization is proposed. The relatively big discrepancy between Listed and Kas VGPs could stem from an unaveraged paleosecular variation or from a small but significant age difference during rapid plate movements.
  • Bispo-Santos, Franklin; D’Agrella-Filho, Manoel S.; Pesonen, Lauri J.; Salminen, Johanna M.; Reis, Nelson J.; Silva, Julia Massucato (2020)
    In recent years, there has been a significant increase in the paleomagnetic data of the Amazonian Craton, with important geodynamic and paleogeographic implications for the Paleo-Mesoproterozoic Columbia supercontinent (a.k.a., Nuna, Hudsoland). Despite recent increase of paleomagnetic data for several other cratons in Columbia, its longevity and the geodynamic processes that resulted in its formation are not well known. A paleomagnetic study was performed on rocks from the similar to 1535 Ma AMG (Anorthosite-Mangerite-Rapakivi Granite) Mucajai Complex located in the Roraima State (Brazil), in the northern portion of the Amazonian Craton, the Guiana Shield. Thermal and AF treatments revealed northwestern/southeastern directions with upward/downward inclinations for samples from twelve sites. This characteristic remanent magnetization is mainly carried by Ti-poor magnetite and in a lesser amount by hematite. Site mean directions were combined with previous results obtained for three other sites from the Mucajai Complex, producing the dual polarity mean direction: Dm = 132.2 degrees; Im = 35.4 degrees (N = 15; alpha(95) = 12.7 degrees; k = 10.0) and a paleomagnetic pole located at 0.1 degrees E, 38.2 degrees S (A(95) = 12.6 degrees; K = 10.2). The Mucajai pole favours the SAMBA (South AMerica-BAltica) link in a configuration formed by Amazonia and Baltica in Columbia. Also, there is geological and paleomagnetic evidence that the juxtaposition of Baltica and Laurentia at 1.76-1.26 Ga forms the core of Columbia. The present paleomagnetic data predict a long life 1.78-1.43 Ga SAMBA connection forming part of the core of the supercontinent. (c) 2019 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.