Browsing by Subject "Phytate"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Wang, Yu-Jie; Yang, Lingxi; Sontag-Strohm, Tuula (2020)
    This study investigated the mechanisms of the co-migration of phytic acid during beta-glucan isolation and its contribution to the retardation of starch hydrolysis in vitro. During the isolation, phytic acid precipitated together with beta-glucan when ethanol was added as the precipitation solvent. The precipitation of phytic acid was reduced by lowering the pH or the ethanol concentration. When 20% (NH4)(2)SO4 was used as the precipitation solvent, only minor phytic acid was found in isolated beta-glucan, because phytic acid did not precipitate by this solvent. In the in vitro starch hydrolysis test, the isolated oat beta-glucan (OBG) containing 3.9% co-migrated phytic acid showed better retardation effect than OBG containing 0.6% phytic acid. Therefore, we concluded that the co-migration of phytic acid was dependent on the chosen isolation procedure and conditions, and both intrinsic phytic acid and viscosity contributed to the retardation of starch hydrolysis.
  • Chen, Yike Jr (Helsingin yliopisto, 2018)
    Cereal β-glucan, or (1→3)(1→4)-β-D-glucan, has unique viscous and gelling properties, which are related to its physiological effects. The increased viscosity in human gastrointestinal tract by β-glucan is considered a key factor for its health benefits. However, the possible gelling ability of β-glucan in human intestine and its relation to the physiological functionality have not been investigated. The aims of this study were to investigate the possible structure formation of β-glucan at physiological conditions and to understand gelation difference between oat and barley β-glucan (OBG and BBG, respectively). Additionally, the effects of phytate and molecular weight (MW) on structure formation of β-glucan were studied. Oat (ROBG14, ROBG22) and barley bran concentrates (RBBG18) were used for in vitro studies in upper gut model. OBG14 was extracted from oat concentrates and used for further producing phytate-removed OBG (PR-OBG) or enzymatically degraded OBG (ENZ-OBG). The effect of phytate or molecular weight on gelation of beta-glucan was studied by comparing the gelation of PR-OBG or ENZ-OBG to OBG14 after 2 h and 1 d. The effect of β-glucan source was studied with medium viscosity oat (MOBG) and barley (MBBG) β-glucan with same molecular weight and concentration on day 1 and day 4. The extracted samples were first dissolved at physiological T 37°C for 2 h and the gel properties of the samples were measured with oscillatory measurements. OBG showed more structure formation than BBG at low concentrations in both studies with in vitro digestion model and extracted β-glucan samples at physiological temperature. In vitro RBBG18 (β-glucan content of the in vitro extract 0.6%) showed liquid-like behavior and no hysteresis obtained, indicating no structure formation. ROBG14 (β-glucan content 0.5%) and ROBG22 (β-glucan content 0.6%) showed entangled network, with similar crossover frequencies, 0.07 and 0.1 Hz, respectively. 1.5% MOBG showed liquid-like behavior on day 1, but storage modulus (G’) increased during storage. The undissolved particles in watery medium of MBBG indicated 37°C was not enough for partial dissolution which could lead to gel. At the same concentration (1%), both PR-OBG and OBG14 showed weak gel structure, with slightly higher G’ in PR-OBG. This indicated that phytate is not the reason for better gelation of OBG than BBG, which was hypothesized due to higher residual phytate in OBG than BBG. ENZ-OBG (0.7%) had lower G’ than OBG14 (0.7%), which indicated more structure formed in higher MW OBG at 2 h. To conclude, OBG is more prone to structure formation than BBG at physiological conditions. Phytate was not the reason for better gelation of OBG than BBG.
  • Mäkelä, Noora; Sontag-Strohm, Tuula; Olin, Miikka; Piironen, Vieno (2020)
    Oat has gained interest due to its high nutritional value. When utilising oat fractions rich in dietary fibre, their inositol phosphate (InsP, including phytate) content is considerably high due to the lack of active phytase in the kilned oat ingredients. The high InsP content is linked to decreased mineral absorption in the gut, but the mineral-binding ability of InsPs also results in antioxidativity and a decrease in starch hydrolysis, thus lowering glycaemic response. This study aimed to further develop an anion exchange liquid chromatographic method for quantification of different InsP forms from oat products and to study the changes in the InsP contents resulting from the differences in the ingredients or processes. The method was applicable for quantifying such InsP forms that can effectively bind minerals. The InsPs were stable at moderate temperatures and in the oat baking process, but a significant degradation occurred during the high-temperature treatments, extrusion, and bacterial fermentation.
  • Mäkelä, Noora; Rosa-Sibakov, Natalia; Wang, Yu-Jie; Mattila, Outi; Nordlund, Emilia; Sontag-Strohm, Tuula (2021)
    There is controversy about the role of viscosity and co-migrating molecules on the bile acid binding of betaglucan. Thus, this study aimed to investigate the impact of 8-glucan molecular weight and the content of both 8-glucan and phytate on the mobility of bile acids by modelling intestinal conditions in vitro. Two approaches were used to evaluate factors underlying this binding effect. The first studied bile acid binding capacity of soluble 8-glucan using purified compounds. Viscosity of the 8-glucan solution governed mainly the mobility of bile acid since both a decrease in 8-glucan concentration and degradation of 8-glucan by enzyme hydrolysis resulted in decreased binding. The second approach investigated the trapping of bile acids in the oat bran matrix. Results suggested trapping of bile acids by the 8-glucan gel network. Additionally, hydrolysis of phytate was shown to increase bile acid binding, probably due to better extractability of 8-glucan in this sample.
  • Zhan, Ruzhen (Helsingin yliopisto, 2017)
    Cereal β-glucans are soluble non-starch polysaccharides. Both the health benefits and industrial applications of β-glucan have been correlated to its capability of forming viscous solutions. Oxidative degradation has been demonstrated to be the critical factor that causes the viscosity drop of β-glucan solutions. In oats and barley, more than 90% of the phytate was found in the soluble fiber fraction, most of which is β-glucan. Phytate has chelating ability to form phytate-mineral complexes. Therefore, phytate has the potential to suppress iron-catalyzed oxidative reactions and is hypothesized to protect β-glucan from oxidative degradation. The aim of this research was to study the role of both intrinsic and added phytate in the oxidative degradation kinetics of β-glucan. Fenton reaction was used to induce oxidation in both oat β-glucan (OBG) and barley β-glucan (BBG) solutions. Degradation of OBG and BBG was indicated by the decrease in molecular weight and viscosity. When the concentration of hydrogen peroxide kept constant, the extent of OBG degradation was found to be greater with increased iron concentration. Most degradation occurred in the beginning of the oxidation and OBG degradation in the initial 3 hours fitted well in the second order kinetics. The reaction rate constant (k) which stands for the degradation rate demonstrated a positive relationship with the iron concentration. Intrinsic phytate in OBG had a protective effect on β-glucan degradation induced by Fenton reaction. After phytate removal by ion exchange resin, degradation of OBG solution became faster with the same amount of oxidative reagents. As to the degradation kinetics, under the same oxidative condition, the k value increased after phytate removal. Added phytic acid also had a protective effect on the degradation of BBG solution, but the effect was not as strong as the intrinsic phytate in OBG. Furthermore, the strength of the protection was related to the PA/iron ratio. When the PA/ iron ratio was 2:5 , there was no protective effect of added phytic acid observed on the degradation of BBG. When the PA/ iron ratio was 2, the added phytic acid had protective effect. When PA/ iron ratio was 1:5, the added phytic acid had a more profound protective effect. In summary, our results demonstrated that both intrinsic phytate and additional phytic acid had a protective effect against the oxidative degradation of β-glucan. Addition of phytic acid in a proper ratio is of importance to maintain the stability of products containing β-glucan. Phytate or phytic acid is commonly considered as an antinutrient related to the mineral bioavailability in food intake. This study however showed an anti-oxidant effect of phytate in β-glucan solutions which suggests that it may have a beneficial effect in physicological conditions.