Browsing by Subject "Phytoplankton"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Poikane, Sandra; Birk, Sebastian; Boehmer, Juergen; Carvalho, Laurence; de Hoyos, Caridad; Gassner, Hubert; Hellsten, Seppo; Kelly, Martyn; Solheim, Anne Lyche; Olin, Mikko; Pall, Karin; Phillips, Geoff; Portielje, Rob; Ritterbusch, David; Sandin, Leonard; Schartau, Ann-Kristin; Solimini, Angelo G.; van den Berg, Marcel; Wolfram, Georg; van de Bund, Wouter (2015)
    The Water Framework Directive is the first international legislation to require European countries to establish comparable ecological assessment schemes for their freshwaters. A key element in harmonising quality classification within and between Europe's river basins is an "Intercalibration" exercise, stipulated by the WFD, to ensure that the good status boundaries in all of the biological assessment methods correspond to similar levels of anthropogenic pressure. In this article, we provide a comprehensive overview of this international comparison, focusing on the assessment schemes developed for freshwater lakes. Out of 82 lake ecological assessment methods reported for the comparison, 62 were successfully intercalibrated and included in the EC Decision on intercalibration, with a high proportion of phytoplankton (18), macrophyte (17) and benthic fauna (13) assessment methods. All the lake assessment methods are reviewed in this article, including the results of intercalibration. Furthermore, the current gaps and way forward to reach consistent management objectives for European lakes are discussed. (C) 2015 The Authors. Published by Elsevier Ltd.
  • Paczkowska, Joanna; Rowe, O.F.; Figueroa, Daniela; Andersson, Agneta (2019)
    The influence of nutrient availability and light conditions on phytoplankton size-structure, nutritional strategy and production were studied in a phosphorus-poor estuary in the northern Baltic Sea receiving humic-rich river water. The relative biomass of mixotrophic nanophytoplankton peaked in spring when heterotrophic bacterial production was high, while autotrophic microphytoplankton had their maximum in summer when primary production displayed highest values. Limiting substance only showed small changes over time, and the day light was at saturating levels all through the study period. We also investigated if the phytoplankton taxonomic richness influences the production. Structured equation modelling indicated that an increase of the taxonomic richness during the warm summer combined with slightly higher phosphorus concentration lead to increased resource use efficiency, which in turn caused higher phytoplankton biomass and primary production. Our results suggest that climate warming would lead to higher primary production in northerly shallow coastal areas, which are influenced by humic-rich river run-off from un-disturbed terrestrial systems.
  • Taipale, S. J.; Vuorio, K.; Strandberg, U.; Kahilainen, K. K.; Jarvinen, M.; Hiltunen, M.; Peltomaa, E.; Kankaala, P. (2016)
    Fish are an important source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for birds, mammals and humans. In aquatic food webs, these highly unsaturated fatty acids (HUFA) are essential for many physiological processes and mainly synthetized by distinct phytoplankton taxa. Consumers at different trophic levels obtain essential fatty acids from their diet because they cannot produce these sufficiently de novo. Here, we evaluated how the increase in phosphorus concentration (eutrophication) or terrestrial organic matter inputs (brownification) change EPA and DHA content in the phytoplankton. Then, we evaluated whether these changes can be seen in the EPA and DHA content of piscivorous European perch (Perca fluviatilis), which is a widely distributed species and commonly consumed by humans. Data from 713 lakes showed statistically significant differences in the abundance of EPA- and DHA-synthesizing phytoplankton as well as in the concentrations and content of these essential fatty acids among oligo-mesotrophic, eutrophic and dystrophic lakes. The EPA and DHA content of phytoplankton biomass (mg HUFA g(-1)) was significantly lower in the eutrophic lakes than in the oligo-mesotrophic or dystrophic lakes. We found a strong significant correlation between the DHA content in the muscle of piscivorous perch and phytoplankton DHA content (r = 0.85) as well with the contribution of DHA-synthesizing phytoplankton taxa (r = 0.83). Among all DHA-synthesizing phytoplankton this correlation was the strongest with the dinoflagellates (r = 0.74) and chrysophytes (r = 0.70). Accordingly, the EPA + DHA content of perch muscle decreased with increasing total phosphorus (r(2) = 0.80) and dissolved organic carbon concentration (r(2) = 0.83) in the lakes. Our results suggest that although eutrophication generally increase biomass production across different trophic levels, the high proportion of low-quality primary producers reduce EPA and DHA content in the food web up to predatory fish. Ultimately, it seems that lake eutrophication and brownification decrease the nutritional quality of fish for human consumers. (C) 2016 The Authors. Published by Elsevier Ltd.
  • Ovaskainen, Otso Tapio; Weigel, Benjamin Matthias; Potyutko, Oleg; Buyvolov, Yury (2019)
    Scale-related assessment strategies are important contributions to successful ecosystem management. With varying impact of environmental drivers from local to regional scales, a focal task is to understand scale-de- pendent responses when assessing the state of an ecosystem. In this study we use large-scale monitoring data, spanning 40 years and including four aquatic bioindicator groups (phytoplankton, zooplankton, periphyton, zoobenthos) to expose the long-term changes of water quality across Russia. We include four hierarchical spatial scales (region, basin, waterbody and observation point) to identify the relative importance of different spatio- temporal scales for the variation of each bioindicator and patterns of co-variation among the bioindicators at different hierarchical levels. We analysed the data with Hierarchical Modelling of Species Communities (HMSC), an approach that belongs to the framework of joint species distribution models. We performed a cross validation to reveal the predictive power of modelled bioindicator variation, partitioned explained variance among the fixed effects (waterbody type, and influence of human population density) and the random effects (spatial and spatio-temporal variation at the four hierarchical scales), and examined the co-variation among bioindicators at each spatio-temporal scale. We detected generally decreasing water quality across Russian freshwaters, yet with region and bioindicator specific trends. For all bioindicators, the dominating part of the variation was attributed the largest (region) and smallest (observation point) hierarchical scales, the region particularly important for benthic and the observation point for pelagic bioindicators. All bioindicators captured the same spatial variation in water quality at the smallest scale of observation point, with phytoplankton, zooplankton and periphyton being associated positively to each other and negatively to zoobenthos. However, at larger spatial scales and at spatio-temporal scales, the associations among the bioindicators became more complex, with phytoplankton and zooplankton showing opposite trends over time. Our study reveals the sensitivity of bioindicators to spatial and temporal scales. While delivering unidirectional robust water quality assessments at the local scale, bioindicator co-variation is more complex over larger geographic scales and over time.