Browsing by Subject "Plant macrofossils"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Schenk, Frederik; Bennike, Ole; Valiranta, Minna; Avery, Rachael; Björck, Svante; Wohlfarth, Barbara (2020)
    The global climate transition from the Lateglacial to the Early Holocene is dominated by a rapid warming trend driven by an increase in orbital summer insolation over high northern latitudes and related feedbacks. The warming trend was interrupted by several abrupt shifts between colder (stadial) and warmer (interstadial) climate states following instabilities of the Atlantic Meridional Overturning Circulation (AMOC) in response to rapidly melting ice sheets. The sequence of abrupt shifts between extreme climate states had profound impacts on ecosystems which make it challenging to reliably quantify state variables like July temperatures within a non-analogue climate envelope. For Europe, there is increasing albeit inconclusive evidence for higher stadial summer temperatures than initially thought. Here we present a comprehensive floral compilation of plant macrofossils from lake sediment cores of 15 sites from S-Scandinavia covering the period similar to 15 to 11 ka BP. We find evidence for a continued presence of plant species indicating high July temperatures throughout the last deglaciation. The presence of hemiboreal plants in close vicinity to the southern margin of the Fennoscandian Ice Sheet implies a strong thermal summer forcing for the rapid ice sheet melt. Consistent with some recent studies, we do not find evidence for a general stadial summer cooling, which indicates that other reasons than summer temperatures caused drastic setbacks in proxy signals possibly driven by extreme winter cooling and/or shorter warm seasons. (C) 2020 The Authors. Published by Elsevier Ltd.
  • Leppanen, Jaakko Johannes; Piilo, Sanna; Li, Yuan; Zhang, Hui; Väliranta, Minna (2019)
    Crustacean community structure and dynamics are very well studied in lakes, rivers and oceanic systems but wetlands, where moisture conditions fluctuate, have not received equal attention in research. For example, cladoceran communities in peatland systems in the subarctic region have not been fully investigated. We used paleolimnological and paleoecological methods to study plant and cladoceran assemblages and the community dynamics in two subarctic peatlands, which differ in their hydrological characteristics. At the first site, Iitto, river floods introduce planktonic species to fen pools and the steep topography of the catchment induces rapid but relatively short flooding periods. Fluctuating environmental conditions result in a high amount of cladoceran resting stages in the samples. At the other site, Kaamanen, the cladoceran assemblage goes through clear directional changes, which could be attributed to changes in fen hydrology and ultimately to climatic changes during the past two millennia.