Browsing by Subject "Pneumocystis"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Azoulay, Elie; Pickkers, Peter; Soares, Marcio; Perner, Anders; Rello, Jordi; Bauer, Philippe R.; van de Louw, Andry; Hemelaar, Pleun; Lemiale, Virginie; Taccone, Fabio Silvio; Loeches, Ignacio Martin; Meyhoff, Tine Sylvest; Salluh, Jorge; Schellongowski, Peter; Rusinova, Katerina; Terzi, Nicolas; Mehta, Sangeeta; Antonelli, Massimo; Kouatchet, Achille; Barratt-Due, Andreas; Valkonen, Miia; Landburg, Precious Pearl; Bruneel, Fabrice; Bukan, Ramin Brandt; Pene, Frederic; Metaxa, Victoria; Moreau, Anne Sophie; Souppart, Virginie; Burghi, Gaston; Girault, Christophe; Silva, Ulysses V. A.; Montini, Luca; Barbier, Francois; Nielsen, Lene B.; Gaborit, Benjamin; Mokart, Djamel; Chevret, Sylvie; Efraim Investigators; Nine-I Study Grp (2017)
    In immunocompromised patients with acute hypoxemic respiratory failure (ARF), initial management aims primarily to avoid invasive mechanical ventilation (IMV). To assess the impact of initial management on IMV and mortality rates, we performed a multinational observational prospective cohort study in 16 countries (68 centers). A total of 1611 patients were enrolled (hematological malignancies 51.9%, solid tumors 35.2%, systemic diseases 17.3%, and solid organ transplantation 8.8%). The main ARF etiologies were bacterial (29.5%), viral (15.4%), and fungal infections (14.7%), or undetermined (13.2%). On admission, 915 (56.8%) patients were not intubated. They received standard oxygen (N = 496, 53.9%), high-flow oxygen (HFNC, N = 187, 20.3%), noninvasive ventilation (NIV, N = 153, 17.2%), and NIV + HFNC (N = 79, 8.6%). Factors associated with IMV included age (hazard ratio = 0.92/year, 95% CI 0.86-0.99), day-1 SOFA (1.09/point, 1.06-1.13), day-1 PaO2/FiO(2) (1.47, 1.05-2.07), ARF etiology (Pneumocystis jirovecii pneumonia (2.11, 1.42-3.14), invasive pulmonary aspergillosis (1.85, 1.21-2.85), and undetermined cause (1.46, 1.09-1.98). After propensity score matching, HFNC, but not NIV, had an effect on IMV rate (HR = 0.77, 95% CI 0.59-1.00, p = 0.05). ICU, hospital, and day-90 mortality rates were 32.4, 44.1, and 56.4%, respectively. Factors independently associated with hospital mortality included age (odds ratio = 1.18/year, 1.09-1.27), direct admission to the ICU (0.69, 0.54-0.87), day-1 SOFA excluding respiratory score (1.12/point, 1.08-1.16), PaO2/FiO(2) <100 (1.60, 1.03-2.48), and undetermined ARF etiology (1.43, 1.04-1.97). Initial oxygenation strategy did not affect mortality; however, IMV was associated with mortality, the odds ratio depending on IMV conditions: NIV + HFNC failure (2.31, 1.09-4.91), first-line IMV (2.55, 1.94-3.29), NIV failure (3.65, 2.05-6.53), standard oxygen failure (4.16, 2.91-5.93), and HFNC failure (5.54, 3.27-9.38). HFNC has an effect on intubation but not on mortality rates. Failure to identify ARF etiology is associated with higher rates of both intubation and mortality. This suggests that in addition to selecting the appropriate oxygenation device, clinicians should strive to identify the etiology of ARF.
  • Ma, Liang; Chen, Zehua; Huang, Da Wei; Cisse, Ousmane H.; Rothenburger, Jamie L.; Latinne, Alice; Bishop, Lisa; Blair, Robert; Brenchley, Jason M.; Chabe, Magali; Deng, Xilong; Hirsch, Vanessa; Keesler, Rebekah; Kutty, Geetha; Liu, Yueqin; Margolis, Daniel; Morand, Serge; Pahar, Bapi; Peng, Li; Van Rompay, Koen K. A.; Song, Xiaohong; Song, Jun; Sukura, Antti; Thapar, Sabrina; Wang, Honghui; Weissenbacher-Lang, Christiane; Xu, Jie; Lee, Chao-Hung; Jardine, Claire; Lempicki, Richard A.; Cushion, Melanie T.; Cuomo, Christina A.; Kovacs, Joseph A. (2020)
    Pneumocystis, a major opportunistic pathogen in patients with a broad range of immunodeficiencies, contains abundant surface proteins encoded by a multicopy gene family, termed the major surface glycoprotein (Msg) gene superfamily. This superfamily has been identified in all Pneumocystis species characterized to date, highlighting its important role in Pneumocystis biology. In this report, through a comprehensive and in-depth characterization of 459 msg genes from 7 Pneurnocystis species, we demonstrate, for the first time, the phylogeny and evolution of conserved domains in Msg proteins and provide a detailed description of the classification, unique characteristics, and phylogenetic relatedness of five Msg families. We further describe, for the first time, the relative expression levels of individual msg families in two rodent Pneumocystis species, the substantial variability of the msg repertoires in P. coda from laboratory and wild rats, and the distinct features of the expression site for the classic msg genes in Pneumocystis from 8 mammalian host species. Our analysis suggests multiple functions for this superfamily rather than just conferring antigenic variation to allow immune evasion as previously believed. This study provides a rich source of information that lays the foundation for the continued experimental exploration of the functions of the Msg superfamily in Pneumocystis biology. IMPORTANCE Pneumocystis continues to be a major cause of disease in humans with immunodeficiency, especially those with HIV/AIDS and organ transplants, and is being seen with increasing frequency worldwide in patients treated with immunode-pleting monoclonal antibodies. Annual health care associated with Pneumocystis pneumonia costs similar to$475 million dollars in the United States alone. In addition to causing overt disease in immunodeficient individuals, Pneumocystis can cause subclinical infection or colonization in healthy individuals, which may play an important role in species preservation and disease transmission. Our work sheds new light on the diversity and complexity of the msg superfamily and strongly suggests that the versatility of this superfamily reflects multiple functions, including antigenic variation to allow immune evasion and optimal adaptation to host environmental conditions to promote efficient infection and transmission. These findings are essential to consider in developing new diagnostic and therapeutic strategies.