Browsing by Subject "Polypharmacology"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Ravikumar, Balaguru; Aittokallio, Tero (2018)
    Introduction: Polypharmacology has emerged as an essential paradigm for modern drug discovery process. Multiple lines of evidence suggest that agents capable of modulating multiple targets in a selective manner may offer also improved balance between therapeutic efficacy and safety compared to single-targeted agents. Areas covered: Herein, the authors review the recent progress made in experimental and computational strategies for addressing the critical challenges with rational discovery of selective multi-targeted agents within the context of polypharmacological modelling. Specific focus is placed on multi-targeted mono-therapies, although examples of combinatorial polytherapies are also covered as an important part of the polypharmacology paradigm. The authors focus mainly on anti-cancer treatment applications, where polypharmacology is playing a key role in determining the efficacy-toxicity trade-off of multi-targeting strategies. Expert opinion: Even though it is widely appreciated that complex polypharmacological interactions can contribute both to therapeutic and adverse side-effects, systematic approaches for improving this balance by means of integrated experimental-computational strategies are still lacking. Future developments will be needed for comprehensive collection and harmonization of systems-wide target selectivity data, enabling better utilization and control for multi-targeted activities in the drug development process. Additional areas of future developments include model-based strategies for drug combination screening and improved pre-clinical validation options with animal models.
  • Jaiswal, Alok; Yadav, Bhagwan; Wennerberg, Krister; Aittokallio, Tero (Humana press, 2019)
    Methods in Molecular Biology
    High-throughput drug sensitivity testing provides a powerful phenotypic profiling approach to identify effective drug candidates for individual cell lines or patient-derived samples. Here, we describe an experimental-computational pipeline, named target addiction scoring (TAS), which mathematically transforms the drug response profiles into target addiction signatures, and thereby provides a ranking of potential therapeutic targets according to their functional importance in a particular cancer sample. The TAS pipeline makes use of drug polypharmacology to integrate the drug sensitivity and selectivity profiles through systems-wide interconnection networks between drugs and their targets, including both primary protein targets as well as secondary off-targets. We show how the TAS pipeline enables one to identify not only single-target addictions but also combinatorial coaddictions among targets that often underlie synergistic drug combinations. © Springer Science+Business Media, LLC, part of Springer Nature 2019.