Kostilainen, Kaisamari; Partanen, Eino; Mikkola, Kaija; Wikström, Valtteri; Pakarinen, Satu; Fellman, Vineta; Huotilainen, Minna
(2020)
Objective: Auditory change-detection responses provide information on sound discrimination and memory skills in infants. We examined both the automatic change-detection process and the processing of emotional information content in speech in preterm infants in comparison to full-term infants at term age. Methods: Preterm (n = 21) and full-term infants' (n = 20) event-related potentials (ERP) were recorded at term age. A challenging multi-feature mismatch negativity (MMN) paradigm with phonetic deviants and rare emotional speech sounds (happy, sad, angry), and a simple one-deviant oddball paradigm with pure tones were used. Results: Positive mismatch responses (MMR) were found to the emotional sounds and some of the phonetic deviants in preterm and full-term infants in the multi-feature MMN paradigm. Additionally, late positive MMRs to the phonetic deviants were elicited in the preterm group. However, no group differences to speech-sound changes were discovered. In the oddball paradigm, preterm infants had positive MMRs to the deviant change in all latency windows. Responses to non-speech sounds were larger in preterm infants in the second latency window, as well as in the first latency window at the left hemisphere electrodes (F3, C3). Conclusions: No significant group-level differences were discovered in the neural processing of speech sounds between preterm and full-term infants at term age. Change-detection of non-speech sounds, however, may be enhanced in preterm infants at term age. Significance: Auditory processing of speech sounds in healthy preterm infants showed similarities to full-term infants at term age. Large individual variations within the groups may reflect some underlying differences that call for further studies.