Browsing by Subject "Protein structure"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Kang, Sunmi; Kwon, Hyuk Nam; Kang, Soeun; Park, Sunghyouk (2020)
    Isocitrate dehydrogenase (IDH) mutations are found in low-grade gliomas, and the product of the IDH mutant (MT), 2-hydroxyglutarate (2-HG), is the first known oncometabolite. However, the roles of the IDH wild type (WT) in high-grade glioblastoma, which rarely has the IDH mutation, are still unknown. To investigate possible pathways related to IDH WT in gliomas, we carried out bioinformatics analysis, and found that IDH1 has several putative calmodulin (CaM) binding sites. Pull-down and quantitative dissociation constant (Kd) measurements using recombinant proteins showed that IDH1 WT indeed binds to CaM with a higher affinity than IDH1 R132H MT. This biochemical interaction was demonstrated also in the cellular environment by immunoprecipitation with glioblastoma cell extracts. A synthetic peptide for the suggested binding region interfered with the interaction between CaM and IDH1, confirming the specificity of the binding. Direct binding between the synthetic peptide and CaM was observed in an NMR binding experiment, which additionally revealed that the peptide initially binds to the C-lobe of CaM. The physiological meaning of the CaM-IDH1 WT binding was shown with trifluoperazine (TFP), a CaM antagonist, which disrupted the binding and inhibited survival and migration of glioblastoma cells with IDH1 WT. As CaM signaling is activated in glioblastoma, our results suggest that IDH1 WT may be involved in the CaM-signaling pathway in the tumorigenesis of high-grade gliomas. (C) 2020 Elsevier Inc. All rights reserved.
  • Oeemig, Jesper S.; Ollila, O.H. Samuli; Iwaï, Hideo (2018)
    The TonB protein plays an essential role in the energy transduction system to drive active transport across the outer membrane (OM) using the proton-motive force of the cytoplasmic membrane of Gram-negative bacteria. The C-terminal domain (CTD) of TonB protein is known to interact with the conserved TonB box motif of TonB-dependent OM transporters, which likely induces structural changes in the OM transporters. Several distinct conformations of differently dissected CTDs of Escherichia coli TonB have been previously reported. Here we determined the solution NMR structure of a 96-residue fragment of Pseudomonas aeruginosa TonB (PaTonB-96). The structure shows a monomeric structure with the flexible C-terminal region (residues 338-342), different from the NMR structure of E. coli TonB (EcTonB-137). The extended and flexible C-terminal residues are confirmed by N-15 relaxation analysis and molecular dynamics simulation. We created models for the PaTonB-96/TonB box interaction and propose that the internal fluctuations of PaTonB-96 makes it more accessible for the interactions with the TonB box and possibly plays a role in disrupting the plug domain of the TonB-dependent OM transporters.
  • Kiessling, Andreas R.; Malik, Anchal; Goldman, Adrian (2020)
    Adhesion is the initial step in the infection process of gram-negative bacteria. It is usually followed by the formation of biofilms that serve as a hub for further spread of the infection. Type V secretion systems engage in this process by binding to components of the extracellular matrix, which is the first step in the infection process. At the same time they provide protection from the immune system by either binding components of the innate immune system or by establishing a physical layer against aggressors. Trimeric autotransporter adhesins (TAAs) are of particular interest in this family of proteins as they possess a unique structural composition which arises from constraints during translocation. The sequence of individual domains can vary dramatically while the overall structure can be very similar to one another. This patchwork approach allows researchers to draw conclusions of the underlying function of a specific domain in a structure-based approach which underscores the importance of solving structures of yet uncharacterized TAAs and their individual domains to estimate the full extent of functions of the protein a priori. Here, we describe recent advances in understanding the translocation process of TAAs and give an overview of structural motifs that are unique to this class of proteins. The role of BpaC in the infection process of Burkholderia pseudomallei is highlighted as an exceptional example of a TAA being at the centre of infection initiation.
  • Rosti, Katja; Goldman, Adrian; Kajander, Tommi (2015)
    Background: The protein growth arrest specific-1 (GAS1) was discovered based on its ability to stop the cell cycle. During development it is involved in embryonic patterning, inhibits cell proliferation and mediates cell death, and has therefore been considered as a tumor suppressor. GAS1 is known to signal through two different cell membrane receptors: Rearranged during transformation (RET), and the sonic hedgehog receptor Patched-1. Sonic Hedgehog signalling is important in stem cell renewal and RET mediated signalling in neuronal survival. Disorders in both sonic hedgehog and RET signalling are connected to cancer progression. The neuroprotective effect of RET is controlled by glial cell-derived neurotrophic factor family ligands and glial cell-derived neurotrophic factor receptor alphas (GFR alpha s). Human Growth arrest specific-1 is a distant homolog of the GFRas. Results: We have produced and purified recombinant human GAS1 protein, and confirmed that GAS1 is a monomer in solution by static light scattering and small angle X-ray scattering analysis. The low resolution solution structure reveals that GAS1 is more elongated and flexible than the GFRas, and the homology modelling of the individual domains show that they differ from GFR alpha s by lacking the amino acids for neurotrophic factor binding. In addition, GAS1 has an extended loop in the N-terminal domain that is conserved in vertebrates after the divergence of fishes and amphibians. Conclusions: We conclude that GAS1 most likely differs from GFRas functionally, based on comparative structural analysis, while it is able to bind the extracellular part of RET in a neurotrophic factor independent manner, although with low affinity in solution. Our structural characterization indicates that GAS1 differs from GFR alpha's significantly also in its conformation, which probably reflects the functional differences between GAS1 and the GFR alpha s.