Sort by: Order: Results:

Now showing items 1-3 of 3
  • Plikk, Anna; Engels, Stefan; Luoto, Tomi P.; Nazarova, Larisa; Salonen, J. Sakari; Helmens, Karin F. (2019)
  • Kuosmanen, Niina; Marquer, Laurent; Tallavaara, Miikka; Molinari, Chiara; Zhang, Yurui; Alenius, Teija; Edinborough, Kevan; Pesonen, Petro; Reitalu, Triin; Renssen, Hans; Trondman, Anna-Kari; Seppa, Heikki (2018)
    QuestionsWe investigated the changing role of climate, forest fires and human population size in the broad-scale compositional changes in Holocene vegetation dynamics before and after the onset of farming in Sweden (at 6,000cal yr BP) and in Finland (at 4,000calyr BP). LocationSouthern and central Sweden, SW and SE Finland. MethodsHolocene regional plant abundances were reconstructed using the REVEALS model on selected fossil pollen records from lakes. The relative importance of climate, fires and human population size on changes in vegetation composition was assessed using variation partitioning. Past climate variable was derived from the LOVECLIM climate model. Fire variable was reconstructed from sedimentary charcoal records. Estimated trend in human population size was based on the temporal distribution of archaeological radiocarbon dates. ResultsClimate explains the highest proportion of variation in vegetation composition during the whole study period in Sweden (10,000-4,000cal yr BP) and in Finland (10,000-1,000cal yr BP), and during the pre-agricultural period. In general, fires explain a relatively low proportion of variation. Human population size has significant effect on vegetation dynamics after the onset of farming and explains the highest variation in vegetation in S Sweden and SW Finland. ConclusionsMesolithic hunter-gatherer populations did not significantly affect vegetation composition in Fennoscandia, and climate was the main driver of changes at that time. Agricultural communities, however, had greater effect on vegetation dynamics, and the role of human population size became a more important factor during the late Holocene. Our results demonstrate that climate can be considered the main driver of long-term vegetation dynamics in Fennoscandia. However, in some regions the influence of human population size on Holocene vegetation changes exceeded that of climate and has a longevity dating to the early Neolithic.
  • Amesbury, Matthew J.; Booth, Robert K.; Roland, Thomas P.; Bunbury, Joan; Clifford, Michael J.; Charman, Dan J.; Elliot, Suzanne; Finkelstein, Sarah; Garneau, Michelle; Hughes, Paul D. M.; Lamarre, Alexandre; Loisel, Julie; Mackay, Helen; Magnan, Gabriel; Markel, Erin R.; Mitchell, Edward A. D.; Payne, Richard J.; Pelletier, Nicolas; Roe, Helen; Sullivan, Maura E.; Swindles, Graeme T.; Talbot, Julie; van Bellen, Simon; Warner, Barry G. (2018)
    Fossil testate amoeba assemblages have been used to reconstruct peatland palaeohydrology for more than two decades. While transfer function training sets are typically of local-to regional-scale in extent, combining those data to cover broad ecohydrological gradients, from the regional-to continental- and hemispheric-scales, is useful to assess if ecological optima of species vary geographically and therefore may have also varied over time. Continental-scale transfer functions can also maximise modern analogue quality without losing reconstructive skill, providing the opportunity to contextualise understanding of purely statistical outputs with greater insight into the biogeography of organisms. Here, we compiled, at moderate taxonomic resolution, a dataset of nearly 2000 modern surface peatland testate amoeba samples from 137 peatlands throughout North America. We developed transfer functions using four model types, tested them statistically and applied them to independent palaeoenvironmental data. By subdividing the dataset into eco-regions, we examined biogeographical patterns of hydrological optima and species distribution across North America. We combined our new dataset with data from Europe to create a combined transfer function. The performance of our North-American transfer function was equivalent to published models and reconstructions were comparable to those developed using regional training sets. The new model can therefore be used as an effective tool to reconstruct peatland palaeohydrology throughout the North American continent. Some eco-regions exhibited lower taxonomic diversity and some key indicator taxa had restricted ranges. However, these patterns occurred against a background of general cosmopolitanism, at the moderate taxonomic resolution used. Likely biogeographical patterns at higher taxonomic resolution therefore do not affect transfer function performance. Output from the combined North American and European model suggested that any geographical limit of scale beyond which further compilation of peatland testate amoeba data would not be valid has not yet been reached, therefore advocating the potential for a Holarctic synthesis of peatland testate amoeba data. Extending data synthesis to the tropics and the Southern Hemisphere would be more challenging due to higher regional endemism in those areas. (C) 2018 The Authors. Published by Elsevier Ltd.