Browsing by Subject "QUERCUS-ILEX"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Schurgers, G.; Hickler, T.; Miller, P. A.; Arneth, A. (2009)
  • Altimir, N.; Kolari, P.; Tuovinen, J. -P.; Vesala, T.; Bäck, Jaana; Suni, T.; Kulmala, M.; Hari, P. (2006)
  • Vanhatalo, Anni; Ghirardo, Andrea; Juurola, Eija; Schnitzler, Joerg-Peter; Zimmer, Ina; Hellen, Heidi; Hakola, Hannele; Baeck, Jaana (2018)
    Seasonal variations in monoterpene emissions from Scots pine (Pinus sylvestris) are well documented, and emissions are often shown to follow the incident temperatures due to effects on compound volatility. Recent studies have indicated a link between monoterpene emissions and physiological drivers such as photosynthetic capacity during needle development. The complex interplay between the dynamic changes in the biosynthetic capacity to produce monoterpenes and the temperature-dependent evaporation process of volatiles from internal storage reservoirs has not yet been studied under field conditions. In this study, we analysed the relationships between needle monoterpene synthase activities, endogenous monoterpene storage pools and monoterpene emissions of needles in two consecutive years at a boreal forest site in Finland. The results showed changes in the monoterpene synthase activity of needles, linked to seasonality and needle ontogenesis, while the pool of stored monoterpenes (about 0.5% of dry weight) did not change considerably as a function of needle aging. Monoterpene emissions did not correlate directly with enzyme activity or the storage pool size. We observed notably high plant-to-plant variation in the biosynthesis rates of individual monoterpenes, which did not reflect the storage compound mixture. The enzyme activity producing delta-3-carene was only present in the first months after needle flushing, and decreased with needle age, whereas delta-3-carene was abundant in the endogenous monoterpene pool and dominated the needle emissions. This study emphasizes the seasonal, developmental and intraspecific variability of monoterpene biosynthesis and storage, and calls for more in-depth analyses to reveal how such complex interaction affects monoterpene emissions from pine needles in boreal forests.
  • Grossiord, Charlotte; Sevanto, Sanna; Limousin, Jean-Marc; Meir, Patrick; Mencuccini, Maurizio; Pangle, Robert E.; Pockman, William T.; Salmon, Yann; Zweifel, Roman; McDowell, Nate G. (2018)
    Tree transpiration depends on biotic and abiotic factors that might change in the future, including precipitation and soil moisture status. Although short-term sap flux responses to soil moisture and evaporative demand have been the subject of attention before, the relative sensitivity of sap flux to these two factors under long-term changes in soil moisture conditions has rarely been determined experimentally. We tested how long-term artificial change in soil moisture affects the sensitivity of tree-level sap flux to daily atmospheric vapor pressure deficit (VPD) and soil moisture variations, and the generality of these effects across forest types and environments using four manipulative sites in mature forests. Exposure to relatively long-term (two to six years) soil moisture reduction decreases tree sap flux sensitivity to daily VPD and relative extractable water (REW) variations, leading to lower sap flux even under high soil moisture and optimal VPD. Inversely, trees subjected to long-term irrigation showed a significant increase in their sensitivity to daily VPD and REW, but only at the most water-limited site. The ratio between the relative change in soil moisture manipulation and the relative change in sap flux sensitivity to VPD and REW variations was similar across sites suggesting common adjustment mechanisms to long-term soil moisture status across environments for evergreen tree species. Overall, our results show that long-term changes in soil water availability, and subsequent adjustments to these novel conditions, could play a critical and increasingly important role in controlling forest water use in the future.
  • Adamczyk, Bartosz; Heinonsalo, Jussi; Simon, Judy (2020)
    Abstract Organic matter decomposition plays a major role in the cycling of carbon (C) and nutrients in terrestrial ecosystems across the globe. Climate change accelerates the decomposition rate to potentially increase the release of greenhouse gases and further enhance global warming in the future. However, fractions of organic matter vary in turnover times and parts are stabilized in soils for longer time periods (C sequestration). Overall, a better understanding of the mechanisms underlying C sequestration is needed for the development of effective mitigation policies to reduce land-based production of greenhouse gases. Known mechanisms of C sequestration include the recalcitrance of C input, interactions with soil minerals, aggregate formation, as well as its regulation via abiotic factors. In this Minireview, we discuss the mechanisms behind C sequestration including the recently emerging significance of biochemical interactions between organic matter inputs that lead to C stabilization.
  • Rissanen, Kaisa; Vanhatalo, Anni; Salmon, Yann; Bäck, Jaana; Hölttä, Teemu (2020)
    Abstract Tree stems are an overlooked source of volatile organic compounds (VOCs). Their contribution to ecosystem processes and total VOC fluxes is not well studied, and assessing it requires better understanding of stem emission dynamics and their driving processes. To gain more mechanistic insight into stem emission patterns, we measured monoterpene, methanol, and acetaldehyde emissions from the stems of mature Scots pines (Pinus sylvestris L.) in a boreal forest over three summers. We analysed the effects of temperature, soil water content, tree water status, transpiration, and growth on the VOC emissions, and used generalized linear models to test their relative importance in explaining the emissions. We show that Scots pine stems are considerable sources of monoterpenes, methanol, and acetaldehyde, and their emissions are strongly regulated by temperature. However, even small changes in water availability affected the emission potentials: increased soil water content increased the monoterpene emissions within a day, whereas acetaldehyde and methanol emissions responded within two to four days. This lag corresponded to their transport time in the xylem sap from the roots to the stem. Moreover, the emissions of monoterpenes, methanol, and acetaldehyde were influenced by the cambial growth rate of the stem with six- to ten-day lags. This article is protected by copyright. All rights reserved.