Browsing by Subject "QUIESCENCE"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Hyrskyluoto, Alise; Vartiainen, Maria K. (2020)
    Actin has essential functions both in the cytoplasm and in the nucleus, where it has been linked to key nuclear processes, from transcription to DNA damage response. The multifunctional nature of actin suggests that the cell must contain mechanisms to accurately control the cellular actin balance. Indeed, recent results have demonstrated that nuclear actin levels fluctuate to regulate the transcriptional activity of the cell and that controlled nuclear actin polymerization is required for transcription activation, cell cycle progression, and DNA repair. Intriguingly, aberrant nuclear actin regulation has been observed, for example, in cancer, signifying the importance of this process for cellular homeostasis. This review discussed the latest research on how nuclear actin is regulated, and how this influences actin-dependent nuclear processes.
  • Kyheröinen, Salla; Hyrskyluoto, Alise; Sokolova, Maria; Vartiainen, Maria K. (2022)
    Actin has important functions in both cytoplasm and nucleus of the cell, with active nuclear transport mechanisms maintaining the cellular actin balance. Nuclear actin levels are subject to regulation during many cellular processes from cell differentiation to cancer. Here we show that nuclear actin levels increase upon dif-ferentiation of PC6.3 cells towards neuron-like cells. Photobleaching experiments demonstrate that this increase is due to decreased nuclear export of actin during cell differentiation. Increased nuclear actin levels lead to decreased nuclear localization of MRTF-A, a well-established transcription cofactor of SRF. In line with MRTF-A localization, transcriptomics analysis reveals that MRTF/SRF target gene expression is first transiently activated, but then substantially downregulated during PC6.3 cell differentiation. This study therefore describes a novel cellular context, where regulation of nuclear actin is utilized to tune MRTF/SRF target gene expression during cell differentiation.