Browsing by Subject "Quantification"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Valkonen, S.; Pol, E. van der; Böing, A.; Yuana, Y.; Yliperttula, M.; Nieuwland, R.; Laitinen, Saara; Siljander, P. R-M. (2017)
    Extracellular vesicles (EVs) mediate normal physiological homeostasis and pathological processes by facilitating intercellular communication. Research of EVs in basic science and clinical settings requires both methodological standardization and development of reference materials (RM). Here, we show insights and results of biological RM development for EV studies. We used a three-step approach to find and develop a biological RM. First, a literature search was done to find candidates for biological RMs. Second, a questionnaire was sent to EV researchers querying the preferences for RM and their use. Third, a biological RM was selected, developed, characterized, and evaluated. The responses to the survey demonstrated a clear and recognized need for RM optimized for the calibration of EV measurements. Based on the literature, naturally occurring and produced biological RM, such as virus particles and liposomes, were proposed as RM. However, none of these candidate RMs have properties completely matching those of EVs, such as size and refractive index distribution. Therefore, we evaluated the use of nanoerythrosomes (NanoE), vesicles produced from erythrocytes, as a potential biological RM. The strength of NanoE is their resemblance to EVs. Compared to the erythrocyte-derived EVs (eryEVs), NanoE have similar morphology, a similar refractive index (1.37), larger diameter (70% of the NanoE are over 200nm), and increased positive staining for CD235a and lipids (Di-8-ANEPPS) (58% and 67% in NanoE vs. 21% and 45% in eryEVs, respectively). Altogether, our results highlight the general need to develop and validate new RM with similar physical and biochemical properties as EVs to standardize EV measurements between instruments and laboratories.
  • Rahikainen, Anna-Liina; Palo, Jukka U.; de Leeuw, Wiljo; Budowle, Bruce; Sajantila, Antti (2016)
    Blood samples preserved on FTA cards offer unique opportunities for genetic research. DNA recovered from these cards should be stable for long periods of time. However, it is not well established as how well the DNA stored on FTA card for substantial time periods meets the demands of forensic or genomic DNA analyses and especially so for from post-mortem (PM) samples in which the quality can vary upon initial collection. The aim of this study was to evaluate the time-dependent degradation on DNA quality and quantity extracted from up to 16 years old post-mortem bloodstained FTA cards. Four random FTA samples from eight time points spanning 1998 to 2013 (n = 32) were collected and extracted in triplicate. The quantity and quality of the extracted DNA samples were determined with Quantifiler (R) Human Plus (HP) Quantification kit. Internal sample and sample-to-sample variation were evaluated by comparing recovered DNA yields. The DNA from the triplicate samplings were subsequently combined and normalized for further analysis. The practical effect of degradation on DNA quality was evaluated from normalized samples both with forensic and pharmacogenetic target markers. Our results suggest that (1) a PM change, e.g. blood clotting prior to sampling, affects the recovered DNA yield, creating both internal and sample-to-sample variation; (2) a negative correlation between the FTA card storage time and DNA quantity (r = -0.836 at the 0.01 level) was observed; (3) a positive correlation (r = 0.738 at the level 0.01) was found between FTA card storage time and degradation levels. However, no inhibition was observed with the method used. The effect of degradation was manifested clearly with functional applications. Although complete STR-profiles were obtained for all samples, there was evidence of degradation manifested as decreased peak heights in the larger-sized amplicons. Lower amplification success was notable with the large 5.1 kb CYP2D6 gene fragment which strongly supports degradation of the stored samples. According to our results, DNA stored on FTA cards is rather stable over a long time period. DNA extracted from this storage medium can be used as human identification purposes as the method used is sufficiently sensitive and amplicon sizes tend to be <400 bp. However, DNA integrity was affected during storage. This effect should be taken into account depending on the intended application especially if high quality DNA and long PCR amplicons are required. (C) 2016 Elsevier Ireland Ltd. All rights reserved.
  • Shi, Qiao; Hou, Yaxi; Yan, Xu; Mørkeberg, Kristian B.R.; Tenkanen, Tiina Maija (2019)
    Levans and inulins are fructans with mainly beta-(2 -> 6) and beta-(2 -> 1) linkages, respectively. Levans are produced by many lactic acid bacteria, e.g. during sourdough fermentation. Levans have shown prebiotic properties and may also function as in situ-produced hydrocolloids. So far, levan contents have been measured by acid hydrolysis, which cannot distinguish levans from e.g. inulins. In order to develop a specific analysis for levan in food matrices, a Paenibacillus amylolyticus endolevanase was combined with exoinulinase for levan hydrolysis. A separate endoinulinase treatment was used to detect the possible presence of inulin. Interfering sugars were removed by a pre-wash with aqueous ethanol. Levan content was estimated from fructose and glucose released in the hydrolysis, with a correction made for the residual fructose and glucose-containing sugars. The method was validated using wheat model doughs spiked with commercial Erwinia levan, and tested by analyzing levan content in Leuconostoc mesenteroides DSM 20343-fermented fava bean doughs.
  • Husso, Minna; Nissi, Mikko J; Kuivanen, Antti; Halonen, Paavo; Tarkia, Miikka; Teuho, Jarmo; Saunavaara, Virva; Vainio, Pauli; Sipola, Petri; Manninen, Hannu; Ylä-Herttuala, Seppo; Knuuti, Juhani; Töyräs, Juha (BioMed Central, 2019)
    Abstract Background The reliable quantification of myocardial blood flow (MBF) with MRI, necessitates the correction of errors in arterial input function (AIF) caused by the T1 saturation effect. The aim of this study was to compare MBF determined by a traditional dual bolus method against a modified dual bolus approach and to evaluate both methods against PET in a porcine model of myocardial ischemia. Methods Local myocardial ischemia was induced in five pigs, which were subsequently examined with contrast enhanced MRI (gadoteric acid) and PET (O-15 water). In the determination of MBF, the initial high concentration AIF was corrected using the ratio of low and high contrast AIF areas, normalized according to the corresponding heart rates. MBF was determined from the MRI, during stress and at rest, using the dual bolus and the modified dual bolus methods in 24 segments of the myocardium (total of 240 segments, five pigs in stress and rest). Due to image artifacts and technical problems 53% of the segments had to be rejected from further analyses. These two estimates were later compared against respective rest and stress PET-based MBF measurements. Results Values of MBF were determined for 112/240 regions. Correlations for MBF between the modified dual bolus method and PET was rs = 0.84, and between the traditional dual bolus method and PET rs = 0.79. The intraclass correlation was very good (ICC = 0.85) between the modified dual bolus method and PET, but poor between the traditional dual bolus method and PET (ICC = 0.07). Conclusions The modified dual bolus method showed a better agreement with PET than the traditional dual bolus method. The modified dual bolus method was found to be more reliable than the traditional dual bolus method, especially when there was variation in the heart rate. However, the difference between the MBF values estimated with either of the two MRI-based dual-bolus methods and those estimated with the gold-standard PET method were statistically significant.