Browsing by Subject "RAC"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Abdel-Rahman, Wael M.; Ruosaari, Saila; Knuutila, Sakari; Peltomäki, Päivi T (2012)
  • Shcherbakova, Daria M.; Cammer, Natasha Cox; Huisman, Tsipora M.; Verkhusha, Vladislav V.; Hodgson, Louis (2018)
    Direct visualization and light control of several cellular processes is a challenge, owing to the spectral overlap of available genetically encoded probes. Here we report the most red-shifted monomeric near-infrared (NIR) fluorescent protein, miRFP720, and the fully NIR Forster resonance energy transfer (FRET) pair miRFP670-miRFP720, which together enabled design of biosensors compatible with CFP-YFP imaging and blue-green optogenetic tools. We developed a NIR biosensor for Rac1 GTPase and demonstrated its use in multiplexed imaging and light control of Rho GTPase signaling pathways. Specifically, we combined the Rac1 biosensor with CFP-YFP FRET biosensors for RhoA and for Rac1-GDI binding, and concurrently used the LOV-TRAP tool for upstream Rac1 activation. We directly observed and quantified antagonism between RhoA and Rac1 dependent on the RhoA-downstream effector ROCK; showed that Rac1 activity and GDI binding closely depend on the spatiotemporal coordination between these two molecules; and simultaneously observed Rac1 activity during optogenetic manipulation of Rac1.
  • Lillemae, Kadri; Laine, Antti T.; Schramko, Alexey; Niemi, Tomi T. (2018)
    Background:Albumin and mannitol may interfere with hemostasis, but their coinfluence is unclear. We aimed to determine the effects of albumin alone and in combination with mannitol or Ringer acetate (RAC) on hemostasis in crossover in vitro study.Materials and Methods:From citrated fresh whole blood withdrawn from 10 volunteers, we prepared 2.5, 5, 10, 15, and 20 vol% dilutions of 4% albumin (Alb group). Each sample was thereafter diluted by 15% mannitol (Alb/Man group) or RAC (Alb/RAC group) at a ratio of 9:1. Using thromboelastometry, FibTEM (fibrinogen ROTEM) and ExTEM (extrinsic ROTEM) tests were performed.Results:A 20 vol%, but not 2.5 to 15 vol% dilution of albumin caused a prolonged clot formation time, -angle decrease, and maximum clot firmness (MCF) weakening compared with undiluted sample (P
  • Nardone, Giorgia; La Cruz, Jorge Oliver-De; Vrbsky, Jan; Martini, Cecilia; Pribyl, Jan; Skladal, Petr; Pesl, Martin; Caluori, Guido; Pagliari, Stefania; Martino, Fabiana; Maceckova, Zuzana; Hajduch, Marian; Sanz-Garcia, Andres; Pugno, Nicola Maria; Stokin, Gorazd Bernard; Forte, Giancarlo (2017)
    Hippo effectors YAP/TAZ act as on-off mechanosensing switches by sensing modifications in extracellular matrix (ECM) composition and mechanics. The regulation of their activity has been described by a hierarchical model in which elements of Hippo pathway are under the control of focal adhesions (FAs). Here we unveil the molecular mechanism by which cell spreading and RhoA GTPase activity control FA formation through YAP to stabilize the anchorage of the actin cytoskeleton to the cell membrane. This mechanism requires YAP co-transcriptional function and involves the activation of genes encoding for integrins and FA docking proteins. Tuning YAP transcriptional activity leads to the modification of cell mechanics, force development and adhesion strength, and determines cell shape, migration and differentiation. These results provide new insights into the mechanism of YAP mechanosensing activity and qualify this Hippo effector as the key determinant of cell mechanics in response to ECM cues.