Browsing by Subject "RADIATIVE PROPERTIES"

Sort by: Order: Results:

Now showing items 1-9 of 9
  • Pandolfi, Marco; Alados-Arboledas, Lucas; Alastuey, Andres; Andrade, Marcos; Angelov, Christo; Artinano, Begona; Backman, John; Baltensperger, Urs; Bonasoni, Paolo; Bukowiecki, Nicolas; Coen, Martine Collaud; Conil, Sebastien; Coz, Esther; Crenn, Vincent; Dudoitis, Vadimas; Ealo, Marina; Eleftheriadis, Kostas; Favez, Olivier; Fetfatzis, Prodromos; Fiebig, Markus; Flentje, Harald; Ginot, Patrick; Gysel, Martin; Henzing, Bas; Hoffer, Andras; Smejkalova, Adela Holubova; Kalapov, Ivo; Kalivitis, Nikos; Kouvarakis, Giorgos; Kristensson, Adam; Kulmala, Markku; Lihavainen, Heikki; Lunder, Chris; Luoma, Krista; Lyamani, Hassan; Marinoni, Angela; Mihalopoulos, Nikos; Moerman, Marcel; Nicolas, Jose; O'Dowd, Colin; Petäjä, Tuukka; Petit, Jean-Eudes; Pichon, Jean Marc; Prokopciuk, Nina; Putaud, Jean-Philippe; Rodriguez, Sergio; Sciare, Jean; Sellegri, Karine; Swietlicki, Erik; Titos, Gloria; Tuch, Thomas; Tunved, Peter; Ulevicius, Vidmantas; Vaishya, Aditya; Vana, Milan; Virkkula, Aki; Vratolis, Stergios; Weingartner, Ernest; Wiedensohler, Alfred; Laj, Paolo (2018)
    This paper presents the light-scattering properties of atmospheric aerosol particles measured over the past decade at 28 ACTRIS observatories, which are located mainly in Europe. The data include particle light scattering (sigma(sp)) and hemispheric backscattering (sigma(bsp)) coefficients, scattering Angstrom exponent (SAE), backscatter fraction (BF) and asymmetry parameter (g). An increasing gradient of sigma(sp) is observed when moving from remote environments (arctic/mountain) to regional and to urban environments. At a regional level in Europe, sigma(sp) also increases when moving from Nordic and Baltic countries and from western Europe to central/eastern Europe, whereas no clear spatial gradient is observed for other station environments. The SAE does not show a clear gradient as a function of the placement of the station. However, a west-to-east-increasing gradient is observed for both regional and mountain placements, suggesting a lower fraction of fine-mode particle in western/south-western Europe compared to central and eastern Europe, where the fine-mode particles dominate the scattering. The g does not show any clear gradient by station placement or geographical location reflecting the complex relationship of this parameter with the physical properties of the aerosol particles. Both the station placement and the geographical location are important factors affecting the intraannual variability. At mountain sites, higher sigma(sp) and SAE values are measured in the summer due to the enhanced boundary layer influence and/or new particle-formation episodes. Conversely, the lower horizontal and vertical dispersion during winter leads to higher sigma(sp) values at all low-altitude sites in central and eastern Europe compared to summer. These sites also show SAE maxima in the summer (with corresponding g minima). At all sites, both SAE and g show a strong variation with aerosol particle loading. The lowest values of g are always observed together with low sigma(sp) values, indicating a larger contribution from particles in the smaller accumulation mode. During periods of high sigma(sp) values, the variation of g is less pronounced, whereas the SAE increases or decreases, suggesting changes mostly in the coarse aerosol particle mode rather than in the fine mode. Statistically significant decreasing trends of sigma(sp) are observed at 5 out of the 13 stations included in the trend analyses. The total reductions of sigma(sp) are consistent with those reported for PM2.5 and PM10 mass concentrations over similar periods across Europe.
  • Laj, Paolo; Bigi, Alessandro; Rose, Clemence; Andrews, Elisabeth; Myhre, Cathrine Lund; Coen, Martine Collaud; Lin, Yong; Wiedensohler, Alfred; Schulz, Michael; Ogren, John A.; Fiebig, Markus; Gliss, Jonas; Mortier, Augustin; Pandolfi, Marco; Petäjä, Tuukka; Kim, Sang-Woo; Aas, Wenche; Putaud, Jean-Philippe; Mayol-Bracero, Olga; Keywood, Melita; Labrador, Lorenzo; Aalto, Pasi; Ahlberg, Erik; Alados Arboledas, Lucas; Alastuey, Andres; Andrade, Marcos; Artinano, Begona; Ausmeel, Stina; Arsov, Todor; Asmi, Eija; Backman, John; Baltensperger, Urs; Bastian, Susanne; Bath, Olaf; Beukes, Johan Paul; Brem, Benjamin T.; Bukowiecki, Nicolas; Conil, Sebastien; Couret, Cedric; Day, Derek; Dayantolis, Wan; Degorska, Anna; Eleftheriadis, Konstantinos; Fetfatzis, Prodromos; Favez, Olivier; Flentje, Harald; Gini, Maria I.; Gregoric, Asta; Gysel-Beer, Martin; Hallar, A. Gannet; Hand, Jenny; Hoffer, Andras; Hueglin, Christoph; Hooda, Rakesh K.; Hyvärinen, Antti; Kalapov, Ivo; Kalivitis, Nikos; Kasper-Giebl, Anne; Kim, Jeong Eun; Kouvarakis, Giorgos; Kranjc, Irena; Krejci, Radovan; Kulmala, Markku; Labuschagne, Casper; Lee, Hae-Jung; Lihavainen, Heikki; Lin, Neng-Huei; Loeschau, Gunter; Luoma, Krista; Marinoni, Angela; Dos Santos, Sebastiao Martins; Meinhardt, Frank; Merkel, Maik; Metzger, Jean-Marc; Mihalopoulos, Nikolaos; Nhat Anh Nguyen; Ondracek, Jakub; Perez, Noemi; Perrone, Maria Rita; Petit, Jean-Eudes; Picard, David; Pichon, Jean-Marc; Pont, Veronique; Prats, Natalia; Prenni, Anthony; Reisen, Fabienne; Romano, Salvatore; Sellegri, Karine; Sharma, Sangeeta; Schauer, Gerhard; Sheridan, Patrick; Sherman, James Patrick; Schuetze, Maik; Schwerin, Andreas; Sohmer, Ralf; Sorribas, Mar; Steinbacher, Martin; Sun, Junying; Titos, Gloria; Toczko, Barbara; Tuch, Thomas; Tulet, Pierre; Tunved, Peter; Vakkari, Ville; Velarde, Fernando; Velasquez, Patricio; Villani, Paolo; Vratolis, Sterios; Wang, Sheng-Hsiang; Weinhold, Kay; Weller, Rolf; Yela, Margarita; Yus-Diez, Jesus; Zdimal, Vladimir; Zieger, Paul; Zikova, Nadezda (2020)
    Aerosol particles are essential constituents of the Earth's atmosphere, impacting the earth radiation balance directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei. In contrast to most greenhouse gases, aerosol particles have short atmospheric residence times, resulting in a highly heterogeneous distribution in space and time. There is a clear need to document this variability at regional scale through observations involving, in particular, the in situ near-surface segment of the atmospheric observation system. This paper will provide the widest effort so far to document variability of climate-relevant in situ aerosol properties (namely wavelength dependent particle light scattering and absorption coefficients, particle number concentration and particle number size distribution) from all sites connected to the Global Atmosphere Watch network. High-quality data from almost 90 stations worldwide have been collected and controlled for quality and are reported for a reference year in 2017, providing a very extended and robust view of the variability of these variables worldwide. The range of variability observed worldwide for light scattering and absorption coefficients, single-scattering albedo, and particle number concentration are presented together with preliminary information on their long-term trends and comparison with model simulation for the different stations. The scope of the present paper is also to provide the necessary suite of information, including data provision procedures, quality control and analysis, data policy, and usage of the ground-based aerosol measurement network. It delivers to users of the World Data Centre on Aerosol, the required confidence in data products in the form of a fully characterized value chain, including uncertainty estimation and requirements for contributing to the global climate monitoring system.
  • Shen, Yicheng; Virkkula, Aki; Ding, Aijun; Wang, Jiaping; Chi, Xuguang; Nie, Wei; Qi, Ximeng; Huang, Xin; Liu, Qiang; Zheng, Longfei; Xu, Zheng; Petäjä, Tuukka; Aalto, Pasi P.; Fu, Congbin; Kulmala, Markku (2018)
    Aerosol optical properties (AOPs) and supporting parameters-particle number size distributions, PM2 : 5 mass concentrations, and the concentrations of trace gases (NOx and NOy) - were measured at SORPES, a regional background station in Nanjing, China from June 2013 to May 2015. The aerosol was highly scattering: the average scattering coefficient was sigma(sp) =403 +/- 314Mm 1, the absorption coefficient sigma(ap) =26 +/- 19Mm 1, and the single-scattering albedo SS Lambda =0.93 +/- 0.03 for green light. The SSA in Nanjing appears to be slightly higher than published values from several other sites in China and elsewhere. The average Angstrom exponent of absorption (AAE) for the wavelength range 370-950 nm was 1.04 and the AAE range was 0.7-1.4. These AAE values can be explained with different amounts of non-absorbing coating on pure black carbon (BC) cores and different core sizes rather than contribution by brown carbon. The AOPs had typical seasonal cycles with high sigma(sp) and sigma(ap) in winter and low ones in summer: the averages were sigma(sp) =544 +/- 422 and sigma(ap) =36 +/- 24Mm 1 in winter and sigma(sp) =342 +/- 281 and sigma(ap) =20 +/- 13Mm 1 in summer. The intensive AOPs had no clear seasonal cycles, the variations in them were rather related to the evolution of pollution episodes. The diurnal cycles of the intensive AOPs were clear and in agreement with the cycle of the particle number size distribution. The diurnal cycle of SSA was similar to that of the air photochemical age, suggesting that the darkest aerosol originated from fresh traffic emissions. A Lagrangian retroplume analysis showed that the potential source areas of high sigma(sp) and sigma(ap) are mainly in eastern China. Synoptic weather phenomena dominated the cycle of AOPs on a temporal scale of 3-7 days. During pollution episodes, modeled boundary layer height decreased, whereas PM2.5 concentrations and sigma(sp) and sigma(ap) typically increased gradually and remained high during several days but decreased faster, sometimes by even more than an order of magnitude within some hours. During the growth phase of the pollution episodes the intensive AOPs evolved clearly. The mass scattering efficiency MSE of PM2.5 grew during the extended pollution episodes from similar to 4 to similar to 6m(2) g(-1) and the mass fraction of BCe decreased from similar to 10 to similar to 3% during the growth phase of the episodes. Particle growth resulted in the backscatter fraction decreasing from more than 0.16 to less than 0.10, SSA growing from less than 0.9 to more than 0.95, and radiative forcing efficiency (RFE) changing from less than -26Wm(-2) to more than 24Wm(-2), which means that the magnitude of RFE decreased. The RFE probability distribution at SORPES was clearly narrower than at a clean background site which is in agreement with a published RFE climatology.
  • Doulgeris, Konstantinos-Matthaios; Komppula, Mika; Romakkaniemi, Sami; Hyvarinen, Antti-Pekka; Kerminen, Veli-Matti; Brus, David (2020)
    Continuous, semi-long-term, ground-based in situ cloud measurements were conducted during the Pallas Cloud Experiment (PaCE) in 2013. The measurements were carried out in Finnish sub-Arctic region at Sammaltunturi station (67 degrees 58 ' N, 24 degrees 07 ' E; 560m a.s.l.), part of Pallas Atmosphere - Ecosystem Supersite and Global Atmosphere Watch (GAW) program. The main motivation of the campaign was to conduct in situ cloud measurements with three different cloud spectrometer probes and perform an evaluation of their ground-based setups. Therefore, we mutually compared the performance of the cloud and aerosol spectrometer (CAS), the cloud droplet probe (CDP) and the forward-scattering spectrometer probe (FSSP-100) (DMT; Boulder, CO, USA). We investigated how different meteorological parameters affect each instrument's ground-based setup operation and quantified possible biases and discrepancies of different microphysical cloud properties. Based on the obtained results we suggested limitations for further use of the instrument setups in campaigns where the focus is on investigating aerosol-cloud interactions. Measurements in this study were made by instruments owned by the Finnish Meteorological Institute and results concern their operation in sub-Arctic conditions with frequently occurring supercooled clouds. The measured parameter from each instrument was the size distribution, and additionally we derived the number concentration, the effective diameter, the median volume diameter and the liquid water content. A complete intercomparison between the CAS probe and the FSSP-100 ground setups and additionally between the FSSP-100 and the CDP probe ground setups was made and presented. Unfortunately, there was not a sufficient amount of common data to compare all three probes together due to operational problems of the CDP ground setup in sub-zero conditions. The CAS probe that was fixed to one direction lost a significant number of cloud droplets when the wind direction was out of wind iso-axial conditions in comparison with the FSSP-100 and the CDP, which were both placed on a rotating platform. We revealed that CAS and FSSP-100 had good agreement in deriving sizing parameters (effective diameter and median volume diameter from 5 to 35 mu m) even though CAS was losing a significant amount of cloud droplets. The most sensitive derived parameter was liquid water content, which was strongly connected to the wind direction and temperature.
  • Petäjä, Tuukka; Tabakova, Ksenia; Manninen, Antti; Ezhova, Ekaterina; O'Connor, E.; Moisseev, Dmitri; Sinclair, Victoria; Backman, John; Levula, Janne; Luoma, Krista; Virkkula, Aki; Paramonov, Mikhail; Räty, Meri; Äijälä, Mikko; Heikkinen, Liine; Ehn, Mikael; Sipilä, Mikko; Yli-Juuti, Taina; Virtanen, A.; Ritsche, M.; Hickmon, N.; Pulik, G.; Rosenfeld, D.; Worsnop, Douglas; Back, Jaana; Kulmala, Markku; Kerminen, Veli-Matti (2022)
    Boreal forest acts as a carbon sink and contributes to the formation of secondary organic aerosols via emission of aerosol precursor compounds. However, these influences on the climate system are poorly quantified. Here we show direct observational evidence that aerosol emissions from the boreal forest biosphere influence warm cloud microphysics and cloud-aerosol interactions in a scale-dependent and highly dynamic manner. Analyses of in situ and ground-based remote-sensing observations from the SMEAR II station in Finland, conducted over eight months in 2014, reveal substantial increases in aerosol load over the forest one to three days after aerosol-poor marine air enters the forest environment. We find that these changes are consistent with secondary organic aerosol formation and, together with water-vapour emissions from evapotranspiration, are associated with changes in the radiative properties of warm, low-level clouds. The feedbacks between boreal forest emissions and aerosol-cloud interactions and the highly dynamic nature of these interactions in air transported over the forest over timescales of several days suggest boreal forests have the potential to mitigate climate change on a continental scale. Our findings suggest that even small changes in aerosol precursor emissions, whether due to changing climatic or anthropogenic factors, may substantially modify the radiative properties of clouds in moderately polluted environments. Emissions from the boreal forest biosphere can substantially increase aerosol load above the forest and influence the radiative properties of clouds, according to analysis of observations from a monitoring station in Finland.
  • Riskila, Elina; Lindqvist, Hannakaisa; Muinonen, Karri (2021)
    Atmospheric ice crystals scatter sunlight, affecting Earth's climate through the radiation properties of cirrus clouds. Naturally occurring surface roughness and its effect on the scattering properties of ice crystals remain largely unknown. Scattering by ice crystals with rough surfaces is studied by placing a finite, thin surface-roughness element on an infinitely large, planar vacuum-ice boundary. The elements are generated using a statistical model based on fractional Brownian motion. The horizontal roughness scale is described by the Hurst exponent Hand the vertical roughness scale with the root-mean-square roughness parameter R-q. The computations are performed with the surface mode of the Discrete Dipole Approximation software ADDA (version 1.34b). Several incident directions for wavelength of 0.5 mu m from both above and below the planar surface are studied. A refractive index for ice m = 1.313 + i5.889 x10(-10) is used throughout the computations. Results are averaged over ten rough surface realizations for a specific H, R-q-pair. Scattering by the rough elements is compared to that by the corresponding smooth elements. The rougher the element is, the more of the scattered intensity is transmitted through the surface. The rough elements have distinctively smoother angular distributions for the degree of linear polarization than their smooth counterparts. Also, it is found that while roughness itself affects polarization, the exact surface morphology does not seem to have a significant effect. The vertical roughness scale R-q has a larger effect on the light scattering results than the horizontal scale H. Enhanced angular scattering is detected in directions nearly parallel to the vacuum-ice boundary within the ice medium. The phenomenon is explained with a strong internal reflection mechanism. The model for surface roughness, along with the light scattering methodology used here, could be incorporated into geometric optics ray-tracing computations for large ice crystals and other particles. (C) 2021 The Authors. Published by Elsevier Ltd.
  • Wang, Jiaping; Virkkula, Aki; Gao, Yuan; Lee, Shuncheng; Shen, Yicheng; Chi, Xuguang; Nie, Wei; Liu, Qiang; Xu, Zheng; Huang, Xin; Wang, Tao; Cui, Long; Ding, Aijun (2017)
    Temporal variations in aerosol optical properties were investigated at a coastal station in Hong Kong based on the field observation from February 2012 to February 2015. At 550 nm, the average light-scattering (151 +/- 100Mm(-1) / and absorption coefficients (8.3 +/- 6.1Mm(-1) / were lower than most of other rural sites in eastern China, while the single-scattering albedo (SSA = 0.93 +/- 0.05) was relatively higher compared with other rural sites in the Pearl River Delta (PRD) region. Correlation analysis confirmed that the darkest aerosols were smaller in particle size and showed strong scattering wavelength dependencies, indicating possible sources from fresh emissions close to the measurement site. Particles with D-p of 200-800 nm were less in number, yet contributed the most to the light-scattering coefficients among submicron particles. In summer, both Delta BC / Delta CO and SO2 / BC peaked, indicating the impact of nearby combustion sources on this site. Multi-year backward Lagrangian particle dispersion modeling (LPDM) and potential source contribution (PSC) analysis revealed that these particles were mainly from the air masses that moved southward over Shenzhen and urban Hong Kong and the polluted marine air containing ship exhausts. These fresh emission sources led to low SSA during summer months. For winter and autumn months, contrarily, Delta BC / Delta CO and SO2 / BC were relatively low, showing that the site was more under influence of well-mixed air masses from long-range transport including from South China, East China coastal regions, and aged aerosol transported over the Pacific Ocean and Taiwan, causing stronger abilities of light extinction and larger variability of aerosol optical properties. Our results showed that ship emissions in the vicinity of Hong Kong could have visible impact on the light-scattering and absorption abilities as well as SSA at Hok Tsui.
  • Luoma, Krista; Virkkula, Aki; Aalto, Pasi; Petaja, Tuukka; Kulmala, Markku (2019)
    Aerosol optical properties (AOPs) describe the ability of aerosols to scatter and absorb radiation at different wavelengths. Since aerosol particles interact with the sun's radiation, they impact the climate. Our study focuses on the long-term trends and seasonal variations of different AOPs measured at a rural boreal forest site in northern Europe. To explain the observed variations in the AOPs, we also analyzed changes in the aerosol size distribution. AOPs of particles smaller than 10 mu m (PM10) and 1 mu m (PM1) have been measured at SMEAR II, in southern Finland, since 2006 and 2010, respectively. For PM10 particles, the median values of the scattering and absorption coefficients, single-scattering albedo, and backscatter fraction at lambda = 550 nm were 9.8 Mm(-1), 1.3 Mm(-1), 0.88, and 0.14. The median values of scattering and absorption angstrom ngstrom exponents at the wavelength ranges 450-700 and 370-950 nm were 1.88 and 0.99, respectively. We found statistically significant trends for the PM10 scattering and absorption coefficients, single-scattering albedo, and backscatter fraction, and the slopes of these trends were -0.32 Mm(-1), -0.086 Mm(-1), 2.2 x 10(-3), and 1.3 x 10(-3) per year. The tendency for the extensive AOPs to decrease correlated well with the decrease in aerosol number and volume concentrations. The tendency for the backscattering fraction and single-scattering albedo to increase indicates that the aerosol size distribution consists of fewer larger particles and that aerosols absorb less light than at the beginning of the measurements. The trends of the single-scattering albedo and backscattering fraction influenced the aerosol radiative forcing efficiency, indicating that the aerosol particles are scattering the radiation more effectively back into space.
  • Lim, Saehee; Lee, Meehye; Kim, Sang-Woo; Laj, Paolo (2018)
    Black carbon (BC) and brown carbon (BrC) aerosols that are released from the combustion of fossil fuels and biomass are of great concern because of their light-absorbing ability and great abundance associated with various anthropogenic sources, particularly in East Asia. However, the optical properties of ambient aerosols are dependent on the mixing state and the chemical composition of absorbing and non-absorbing aerosols. Here we examined how, in East Asian outflows, the parameters of the aerosol optical properties can be altered seasonally in conjunction with the mixing state and the chemical composition of aerosols, using 3-year aerosol measurements. Our findings highlight the important role played by sulfate in East Asia during the warm season in both enhancing single scattering albedo (SSA) and altering the absorption properties of aerosols-enhancing mass absorption cross section of BC (MAC(BC)) and reducing MAC of BrC (MAC(BrC),(370)). Therefore we suggest that in global radiative forcing models, particular attention should be paid to the consideration of the accurate treatment of the SO2 emission changes in the coming years in this region that will result from China's air quality policy.