Browsing by Subject "RADIOSENSITIVITY"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Ma, Hongbing; Zheng, Shuyu; Zhang, Xiaozhi; Gong, Tuotuo; Lv, Xin; Fu, Shenbo; Zhang, Shuqun; Yin, Xiaoran; Hao, Jingcan; Shan, Changyou; Huang, Shan (2019)
    Resistance to radiotherapy results in relapse and treatment failure in locally advanced esophageal squamous cell carcinoma (ESCC). High mobility group box 1 (HMGB1) is reported to be associated with the radioresistance in bladder and breast cancer. However, the role of HMGB1 in the radiotherapy response in ESCC has not been fully elucidated. Here, we investigated the role of HMGB1 to radioresistance in ESCC clinical samples and cell lines. We found that HMGB1 expression was associated with tumor recurrence after postoperative radiotherapy in locally advanced ESCC patients. HMGB1 knockdown in ESCC cells resulted in increased radiosensitivity both in vitro and in vivo. Autophagy level was found depressed in HMGB1 inhibition cells and activation of autophagy brought back cell's radioresistance. Our results demonstrate that HMGB1 activate autophagy and consequently promote radioresistance. HMGB1 may be used as a predictor of poor response to radiotherapy in ESCC patients. Our finding also highlights the importance of the utility of HMGB1 in ESCC radiosensitization.
  • Tuominen, Heidi; Al-Samadi, Ahmed; Salo, Tuula; Rautava, Jaana (2020)
    Background This study was designed to investigate the invasion of human papillomavirus (HPV) positive human cervical carcinoma cell lines in human leiomyoma-based extracellular matrices in vitro,and to test the suitability of the model for studying the irradiation effects on the cancer cell invasion. Methods HPV positive cervical carcinoma cell lines SiHa and CaSki, and HPV negative squamous cell carcinoma cell line HSC-3 were used. CaSki cells contain around 600 copies of HPV 16 virus in the genome, whereas SiHa have only 1-2 copies per cell. Cells were analyzed using two different human tumor derived extracellular matrix methods (3D myoma disc model, and Myogel Transwell invasion assay). Cultures were irradiated with 4 Gy. Myoma invasion area and the depth of invasion were measured with ImageJ 1.51j8 software. Statistical analyses were performed with SPSS Statistics (IBM SPSS (R) Statistics 25). Results All cells invaded through Myogel coated Transwell membranes and within myoma discs. In myoma discs, a difference in the invasion depth (p = 0.0001) but not in invasion area (p = 0.310) between the HPV positive cell lines was seen, since SiHa (less HPV) invaded slightly better than CaSki (more HPV). HSC-3 cells (HPV negative) invaded deepest (p = 0.048) than either of the HPV positive cell line cells. No difference was detected in the invasion area (p = 0.892) between HPV positive and HPV negative cells. The ionized radiation significantly reduced the invasion depth of HSC-3 (p = 0.008), SiHa (p = 0.0001) and CaSki (p = 0.005). No significant effect on the invasion area was detected in any of the cell lines. However, a significant difference was observed between SiHa and CaSki in the reduction of the invasion depth after radiation (p = 0.013) as the reduction was greater with SiHa than CaSki. Conclusions Both solid and gelatinous human leiomyoma-based extracellular matrix models were suitable platforms to study the invasion of HPV positive cervical carcinoma cells in vitro. SiHa cells with less HPV copy number cells invaded slightly better and were slightly more sensitive to irradiation than CaSki cells with high HPV copy number. However, there was no drastic differences between the invasion properties of these carcinoma cells.
  • Metsälä, Olli; Kreutzer, Joose; Högel, Heidi; Miikkulainen, Petra; Kallio, Pasi; Jaakkola, Panu M. (2018)
    BackgroundCells in solid tumours are variably hypoxic and hence resistant to radiotherapy - the essential role of oxygen in the efficiency of irradiation has been acknowledged for decades. However, the currently available methods for performing hypoxic experiments in vitro have several limitations, such as a limited amount of parallel experiments, incapability of keeping stable growth conditions and dependence on CO2 incubator or a hypoxia workstation. The purpose of this study was to evaluate the usability of a novel portable system (Minihypoxy) in performing in vitro irradiation studies under hypoxia, and present supporting biological data.Materials and methodsThis study was conducted on cancer cell cultures in vitro. The cells were cultured in normoxic (similar to 21% O-2) or in hypoxic (1% O-2) conditions either in conventional hypoxia workstation or in the Minihypoxy system and irradiated at dose rate 1.28Gy/min2.9%. The control samples were sham irradiated. To study the effects of hypoxia and irradiation on cell viability and DNA damage, western blotting, immunostainings and clonogenic assay were used. The oxygen level, pH, evaporation rate and osmolarity of the culturing media on cell cultures in different conditions were followed.ResultsThe oxygen concentration in interest (5, 1 or 0% O-2) was maintained inside the individual culturing chambers of the Minihypoxy system also during the irradiation. The radiosensitivity of the cells cultured in Minihypoxy chambers was declined measured as lower phosphorylation rate of H2A.X and increased clonogenic capacity compared to controls (OER similar to 3).Conclusions The Minihypoxy system allows continuous control of hypoxic environment in multiple wells and is transportable. Furthermore, the system maintains the low oxygen environment inside the individual culturing chambers during the transportation and irradiation in experiments which are typically conducted in separate facilities.