Browsing by Subject "RANGE SHIFTS"

Sort by: Order: Results:

Now showing items 1-19 of 19
  • Norberg, Anna; Abrego Antia, Nerea; Blanchet, F. Guillaume; Adler, Frederick R.; Anderson, Barbara J.; Anttila, Jani; Araújo, Miguel B.; Dallas, Tad Anthony; Dunson, David; Elith, Jane; Foster, Scott; Fox, Richard; Franklin, Janet; Godsoe, William; Guisan, Antoine; O'Hara, Bob; Hill, Nicole A.; Holt, Robert D.; Hui, Francis K.C; Husby, Magne; Kålås, John Atle; Lehikoinen, Aleksi; Luoto, Miska; Mod, Heidi K.; Newell, Graeme; Renner, Ian; Roslin, Tomas Valter; Soininen, Janne; Thuiller, Wilfried; Vanhatalo, Jarno Petteri; Warton, David; White, Matt; Zimmermann, Niklaus E.; Gravel, Dominique; Ovaskainen, Otso Tapio (2019)
    A large array of species distribution model (SDM) approaches has been developed for explaining and predicting the occurrences of individual species or species assemblages. Given the wealth of existing models, it is unclear which models perform best for interpolation or extrapolation of existing data sets, particularly when one is concerned with species assemblages. We compared the predictive performance of 33 variants of 15 widely applied and recently emerged SDMs in the context of multispecies data, including both joint SDMs that model multiple species together, and stacked SDMs that model each species individually combining the predictions afterward. We offer a comprehensive evaluation of these SDM approaches by examining their performance in predicting withheld empirical validation data of different sizes representing five different taxonomic groups, and for prediction tasks related to both interpolation and extrapolation. We measure predictive performance by 12 measures of accuracy, discrimination power, calibration, and precision of predictions, for the biological levels of species occurrence, species richness, and community composition. Our results show large variation among the models in their predictive performance, especially for communities comprising many species that are rare. The results do not reveal any major trade-offs among measures of model performance; the same models performed generally well in terms of accuracy, discrimination, and calibration, and for the biological levels of individual species, species richness, and community composition. In contrast, the models that gave the most precise predictions were not well calibrated, suggesting that poorly performing models can make overconfident predictions. However, none of the models performed well for all prediction tasks. As a general strategy, we therefore propose that researchers fit a small set of models showing complementary performance, and then apply a cross-validation procedure involving separate data to establish which of these models performs best for the goal of the study.
  • Scridel, Davide; Brambilla, Mattia; Martin, Kathy; Lehikoinen, Aleksi; Iemma, Aaron; Matteo, Anderle; Jahnig, Susanne; Caprio, Enrico; Bogliani, Giuseppe; Pedrini, Paolo; Rolando, Antonio; Arlettaz, Raphael; Chamberlain, Dan (2018)
    Mountain regions are globally important areas for biodiversity but are subject to multiple human-induced threats, including climate change, which has been more severe at higher elevations. We reviewed evidence for impacts of climate change on Holarctic mountain bird populations in terms of physiology, phenology, trophic interactions, demography and observed and projected distribution shifts, including effects of other factors that interact with climate change. We developed an objective classification of high-elevation, mountain specialist and generalist species, based on the proportion oftheir breeding range occurring in mountain regions. Our review found evidence of responses of mountain bird populations to climate (extreme weather events, temperature, rainfall and snow) and environmental (i.e. land use) change, but we know little about either the underlying mechanisms or the synergistic effects of climate and land use. Long-term studies assessing reproductive success or survival of mountain birds in relation to climate change were rare. Few studies have considered shifts in elevational distribution over time and a meta-analysis did not find a consistent direction in elevation change. A meta-analysis carried out on future projections of distribution shifts suggested that birds whose breeding distributions are largely restricted to mountains are likely to be more negatively impacted than other species. Adaptation responses to climate change rely mostly on managing and extending current protected areas for both species already present, and for expected colonizing species that are losing habitat and climate space at lower elevation. However, developing effective management actions requires an improvement in the current knowledge of mountain species ecology, in the quality of climate data and in understanding the role of interacting factors. Furthermore, the evidence was mostly based on widespread species rather than mountain specialists. Scientists should provide valuable tools to assess the status of mountain birds, for example through the development of a mountain bird population index, and policy-makers should influence legislation to develop efficient agri-environment schemes and forestry practices for mountain birds, as well as to regulate leisure activities at higher elevations.
  • Pineda-Munoz, Silvia; Jukar, Advait M.; Toth, Aniko B.; Fraser, Danielle; Du, Andrew; Barr, W. Andrew; Amatangelo, Kathryn L.; Balk, Meghan A.; Behrensmeyer, Anna K.; Blois, Jessica; Davis, Matt; Eronen, Jussi T.; Gotelli, Nicholas J.; Looy, Cindy; Miller, Joshua H.; Shupinski, Alexandria B.; Soul, Laura C.; Villasenor, Amelia; Wing, Scott; Lyons, S. Kathleen (2021)
    The late Quaternary of North America was marked by prominent ecological changes, including the end-Pleistocene megafaunal extinction, the spread of human settlements and the rise of agriculture. Here we examine the mechanistic reasons for temporal changes in mammal species association and body size during this time period. Building upon the co-occurrence results from Lyons et al. (2016) - wherein each species pair was classified as spatially aggregated, segregated or random - we examined body mass differences (BMD) between each species pair for each association type and time period (Late Pleistocene: 40 000(14)C-11 700(14)C ybp, Holocene: 11 700(14)C-50 ybp and Modern: 50-0 yr). In the Late Pleistocene and Holocene, the BMD of both aggregated and segregated species pairs was significantly smaller than the BMD of random pairs. These results are consistent with environmental filtering and competition as important drivers of community structure in both time periods. Modern assemblages showed a breakdown between BMD and co-occurrence patterns: the average BMD of aggregated, segregated and random species pairs did not differ from each other. Collectively, these results indicate that the late Quaternary mammalian extinctions not only eliminated many large-bodied species but were followed by a re-organization of communities that altered patterns of species coexistence and associated differences in body size.
  • Virkkala, Raimo; Aalto, Juha; Heikkinen, Risto; Rajasärkkä, Ari; Kuusela, Saija; Leikola, Niko; Luoto, Miska (2020)
    Increased attention is being paid to the ecological drivers and conservation measures which could mitigate climate change-induced pressures for species survival, potentially helping populations to remain in their present-day locations longer. One important buffering mechanism against climate change may be provided by the heterogeneity in topography and consequent local climate conditions. However, the buffering capacity of this topoclimate has so far been insufficiently studied based on empirical survey data across multiple sites and species. Here, we studied whether the fine-grained air temperature variation of protected areas (PAs) affects the population changes of declining northern forest bird species. Importantly to our study, in PAs harmful land use, such as logging, is not allowed, enabling the detection of the effects of temperature buffering, even at relatively moderate levels of topographic variation. Our survey data from 129 PAs located in the boreal zone in Finland show that the density of northern forest species was higher in topographically heterogeneous PAs than in topographically more homogeneous PAs. Moreover, local temperature variation had a significant effect on the density change of northern forest birds from 1981-1999 to 2000-2017, indicating that change in bird density was generally smaller in PAs with higher topographic variation. Thus, we found a clear buffering effect stemming from the local temperature variation of PAs in the population trends of northern forest birds.
  • Mammola, Stefano; Pétillon, Julien; Hacala, Axel; Monsimet, Jérémy; Marti, Sapho-Lou; Cardoso, Pedro; Lafage, Denis (2021)
    Aim Species distribution models (SDMs) have emerged as essential tools in the equipment of many ecologists, useful to explore species distributions in space and time and answering an assortment of questions related to biogeography, climate change biology and conservation biology. Historically, most SDM research concentrated on well-known organisms, especially vertebrates. In recent years, these tools are becoming increasingly important for predicting the distribution of understudied invertebrate taxa. Here, we reviewed the literature published on main terrestrial arthropod predators (ants, ground beetles and spiders) to explore some of the challenges and opportunities of species distribution modelling in mega-diverse arthropod groups. Location Global. Methods Systematic mapping of the literature and bibliometric analysis. Results Most SDM studies of animals to date have focused either on broad samples of vertebrates or on arthropod species that are charismatic (e.g. butterflies) or economically important (e.g. vectors of disease, crop pests and pollinators). We show that the use of SDMs to map the geography of terrestrial arthropod predators is a nascent phenomenon, with a near-exponential growth in the number of studies over the past ten years and still limited collaborative networks among researchers. There is a bias in studies towards charismatic species and geographical areas that hold lower levels of diversity but greater availability of data, such as Europe and North America. Conclusions Arthropods pose particular modelling challenges that add to the ones already present for vertebrates, but they should also offer opportunities for future SDM research as data and new methods are made available. To overcome data limitations, we illustrate the potential of modern data sources and new modelling approaches. We discuss areas of research where SDMs may be combined with dispersal models and increasingly available phylogenetic and functional data to understand evolutionary changes in ranges and range-limiting traits over past and contemporary time-scales.
  • Antao, Laura H.; Pöyry, Juha; Leinonen, Reima; Roslin, Tomas (2020)
    Aim Biodiversity is currently undergoing rapid restructuring across the globe. However, the nature of biodiversity change is not well understood, as community-level changes may hide differential responses in individual population trajectories. Here, we quantify spatio-temporal community and stability dynamics using a long-term high-quality moth monitoring dataset. Location Finland, Northern Europe. Time period 1993-2012. Major taxa studied Nocturnal moths (Lepidoptera). Methods We quantified patterns of change in species richness, total abundance, dominance and temporal variability at different organizational levels over a 20 year period and along a latitudinal gradient of 1,100 km. We used mixed-effects and linear models to quantify temporal trends for the different community and stability metrics and to test for latitudinal (or longitudinal) effects. Results We found contrasting patterns for different community metrics, and strong latitudinal patterns. While total moth abundance has declined, species richness has simultaneously increased over the study period, but with rates accelerating with latitude. In addition, we revealed a latitudinal pattern in temporal variability-the northernmost locations exhibited higher variability over time, as quantified by both metrics of richness and aggregated species population trends. Main conclusions When combined, our findings likely reflect an influx of species expanding their ranges poleward in response to warming. The overall decline in abundance and the latitudinal effect on temporal variability highlight potentially severe consequences of global change for community structure and integrity across high-latitude regions. Importantly, our results underscore that increases in species richness may be paralleled by a loss of individuals, which in turn might affect higher trophic levels. Our findings suggest that the ongoing global species redistribution is affecting both community structure and stability over time, leading to compounded and partly opposing effects of global change depending on which biodiversity dimension we focus on.
  • Lehikoinen, Aleksi; Brotons, Lluis; Calladine, John; Campedelli, Tommaso; Escandell, Virginia; Flousek, Jiri; Grueneberg, Christoph; Haas, Fredrik; Harris, Sarah; Herrando, Sergi; Husby, Magne; Jiguet, Frederic; Kalas, John Atle; Lindstrom, Ake; Lorrilliere, Romain; Molina, Blas; Pladevall, Clara; Calvi, Gianpiero; Sattler, Thomas; Schmid, Hans; Sirkiä, Päivi M.; Teufelbauer, Norbert; Trautmann, Sven (2019)
    Mountain areas often hold special species communities, and they are high on the list of conservation concern. Global warming and changes in human land use, such as grazing pressure and afforestation, have been suggested to be major threats for biodiversity in the mountain areas, affecting species abundance and causing distribution shifts towards mountaintops. Population shifts towards poles and mountaintops have been documented in several areas, indicating that climate change is one of the key drivers of species' distribution changes. Despite the high conservation concern, relatively little is known about the population trends of species in mountain areas due to low accessibility and difficult working conditions. Thanks to the recent improvement of bird monitoring schemes around Europe, we can here report a first account of population trends of 44 bird species from four major European mountain regions: Fennoscandia, UK upland, south-western (Iberia) and south-central mountains (Alps), covering 12 countries. Overall, the mountain bird species declined significantly (-7%) during 2002-2014, which is similar to the declining rate in common birds in Europe during the same period. Mountain specialists showed a significant -10% decline in population numbers. The slope for mountain generalists was also negative, but not significantly so. The slopes of specialists and generalists did not differ from each other. Fennoscandian and Iberian populations were on average declining, while in United Kingdom and Alps, trends were nonsignificant. Temperature change or migratory behaviour was not significantly associated with regional population trends of species. Alpine habitats are highly vulnerable to climate change, and this is certainly one of the main drivers of mountain bird population trends. However, observed declines can also be partly linked with local land use practices. More efforts should be undertaken to identify the causes of decline and to increase conservation efforts for these populations.
  • Mod, Heidi K.; Scherrer, Daniel; Di Cola, Valeria; Broennimann, Olivier; Blandenier, Quentin; Breiner, Frank T.; Buri, Aline; Goudet, Jerome; Guex, Nicolas; Lara, Enrique; Mitchell, Edward A. D.; Niculita-Hirzel, Helene; Pagni, Marco; Pellissier, Loic; Pinto-Figueroa, Eric; Sanders, Ian R.; Schmidt, Benedikt R.; Seppey, Christophe V. W.; Singer, David; Ursenbacher, Sylvain; Yashiro, Erika; van der Meer, Jan R.; Guisan, Antoine (2020)
    Assessing the degree to which climate explains the spatial distributions of different taxonomic and functional groups is essential for anticipating the effects of climate change on ecosystems. Most effort so far has focused on above-ground organisms, which offer only a partial view on the response of biodiversity to environmental gradients. Here including both above- and below-ground organisms, we quantified the degree of topoclimatic control on the occurrence patterns of >1,500 taxa and phylotypes along a c. 3,000 m elevation gradient, by fitting species distribution models. Higher model performances for animals and plants than for soil microbes (fungi, bacteria and protists) suggest that the direct influence of topoclimate is stronger on above-ground species than on below-ground microorganisms. Accordingly, direct climate change effects are predicted to be stronger for above-ground than for below-ground taxa, whereas factors expressing local soil microclimate and geochemistry are likely more important to explain and forecast the occurrence patterns of soil microbiota. Detailed mapping and future scenarios of soil microclimate and microhabitats, together with comparative studies of interacting and ecologically dependent above- and below-ground biota, are thus needed to understand and realistically forecast the future distribution of ecosystems.
  • Lehikoinen, Petteri; Tiusanen, Maria; Santangeli, Andrea; Rajasärkkä, Ari; Jaatinen, Kim; Valkama, Jari; Virkkala, Raimo; Lehikoinen, Aleksi (2021)
    Climate change has ubiquitous impacts on ecosystems and threatens biodiversity globally. One of the most recognized impacts are redistributions of species, a process which can be hindered by habitat degradation. Protected areas (PAs) have been shown to be beneficial for preserving and reallocating species occurrences under climate change. Yet, studies investigating effects of PA networks on species' range shifts under climate change remain scarce. In theory, a well-connected network of PAs should promote population persistence under climate change and habitat degradation. To study this, we evaluated the effects of PA coverage on avian communities in Finland between two study periods of 1980-1999 and 2000-2015. Climate-driven community impacts were investigated by using community temperature index (CTI). We used linear models to study the association of PA coverage and the CTI changes in southern, central and northern Finland. In northern and central Finland, higher PA coverage was associated with lower changes in CTI and 45% PA coverage in northern and 13% in central Finland corresponded with complete mitigation of CTI increase. These results indicate that higher PA coverage strongly increases community resilience to warming climate. However a similar association between PA coverage and changes in CTI was not apparent in southern Finland. The PA coverage in southern Finland was much lower than in the two other sections and thus, may be too sparse to favour community resilience against climate change. The results provide empirical evidence for the international need to rapidly expand PA networks and halt biodiversity loss.
  • Niskanen, Annina Kaisa Johanna; Niittynen, Pekka; Aalto, Juha; Väre, Henry; Luoto, Miska (2019)
    Aim: Species' biogeographical patterns are already being altered by climate change. Here, we provide predictions of the impacts of a changing climate on species' geographical ranges within high-latitude mountain flora on a sub-continental scale. We then examined the forecasted changes in relation to species' biogeographic histories. Location: Fennoscandia, Northern Europe (55-72 degrees N). Methods: We examined the sensitivity of 164 high-latitude mountain species to changing climate by modelling their distributions in regard to climate, local topography and geology at a 1 km(2) resolution. Using an ensemble of six statistical modelling techniques and data on current (1981-2010) and future (2070-2099) climate based on three Representative Concentration Pathways (RCPs 2.6, 4.5, 8.5), we developed projections of current and future ranges. Results: The average species richness of the mountain flora is predicted to decrease by 15%-47% per 1 km(2) cell, depending on the climate scenario considered. Arctic flora is projected to undergo severe range loss along with non-poleward range contractions, while alpine flora is forecasted to find suitable habitat in a warmer North. A substantial majority (71%-92%) of the studied species are projected to lose more than half of their present range by the year 2100. Species predicted to lose all suitable habitat had ranges centred in the northernmost (>68 degrees N) part of continental Europe. Main conclusions: Climate change is predicted to substantially diminish the extent and richness of Europe's high-latitude mountain flora. Interestingly, species' biogeographic histories affect their vulnerability to climate change. The vulnerability of true Arctic and endemic species marks them as highly important for conservation decisions.
  • Garcia, Raquel A.; Araujo, Miguel B.; Burgess, Neil D.; Foden, Wendy B.; Gutsche, Alexander; Rahbek, Carsten; Cabeza, Mar (2014)
  • Lehikoinen, Aleksi; Virkkala, Raimo (2016)
    There is increasing evidence that climate change shifts species distributions towards poles and mountain tops. However, most studies are based on presence-absence data, and either abundance or the observation effort has rarely been measured. In addition, hardly any studies have investigated the direction of shifts and factors affecting them. Here, we show using count data on a 1000km south-north gradient in Finland, that between 1970-1989 and 2000-2012, 128 bird species shifted their densities, on average, 37km towards the north north-east. The species-specific directions of the shifts in density were significantly explained by migration behaviour and habitat type. Although the temperatures have also moved on average towards the north north-east (186km), the species-specific directions of the shifts in density and temperature did not correlate due to high variation in density shifts. Findings highlight that climate change is unlikely the only driver of the direction of species density shifts, but species-specific characteristics and human land-use practices are also influencing the direction. Furthermore, the alarming results show that former climatic conditions in the north-west corner of Finland have already moved out of the country. This highlights the need for an international approach in research and conservation actions to mitigate the impacts of climate change.
  • Trivino, Maria; Kujala, Heini; Araujo, Miguel B.; Cabeza, Mar (2018)
    Species are expected to shift their distributions in response to global environmental changes and additional protected areas are needed to encompass the corresponding changes in the distributions of their habitats. Conservation policies are likely to become obsolete unless they integrate the potential impacts of climate and land-use change on biodiversity. We identify conservation priority areas for current and future projected distributions of Iberian bird species. We then investigate the extent to which global change informed priority areas are: (i) covered by existing protected area networks (national protected areas and Natura 2000); (ii) threatened by agricultural or urban land-use changes. We use outputs of species distributions models fitted with climatic data as inputs in spatial prioritization tools to identify conservation priority areas for 168 bird species. We use projections of land-use change to then discriminate between threatened and non-threatened priority areas. 19% of the priority areas for birds are covered by national protected areas and 23% are covered by Natura 2000 sites. The spatial mismatch between protected area networks and priority areas for birds is projected to increase with climate change. But there are opportunities to improve the protection of birds under climate change, as half of the priority areas are currently neither protected nor in conflict with urban or agricultural land-uses. We identify critical areas for bird conservation both under current and climate change conditions, and propose that they could guide the establishment of new conservation areas across the Iberian Peninsula complementing existing protected areas.
  • Pavon-Jordan, Diego; Abdou, Web; Azafzaf, Hichem; Balaz, Michal; Bino, Taulant; Borg, John J.; Bozic, Luca; Butchart, Stuart H. M.; Clausen, Preben; Sniauksta, Laimonas; Dakki, Mohamed; Devos, Koen; Domsa, Cristi; Encarnacao, Vitor; Etayeb, Khaled; Farago, Sandor; Fox, Anthony D.; Frost, Teresa; Gaudard, Clemence; Georgiev, Valeri; Goratze, Irakli; Hornman, Menno; Keller, Verena; Kostiushyn, Vasiliy; Langendoen, Tom; Ieronymidou, Christina; Lewis, Lesley J.; Lorentsen, Svein-Hakon; Luigujoe, Leho; Meissner, Wlodzimierz; Mikuska, Tibor; Molina, Blas; Musil, Petr; Musilova, Zuzana; Nagy, Szabolcs; Natykanets, Viktor; Nilsson, Leif; Paquet, Jean-Yves; Portolou, Danae; Ridzon, Josef; Santangeli, Andrea; Sayoud, Samir; Sciban, Marko; Stipniece, Antra; Teufelbauer, Norbert; Topic, Goran; Uzunova, Danka; Vizi, Andrej; Wahl, Johannes; Yavuz, Kiraz E.; Zenatello, Marco; Lehikoinen, Aleksi; Lawicki, Lukasz (2020)
    Migratory waterbirds require an effectively conserved cohesive network of wetland areas throughout their range and life-cycle. Under rapid climate change, protected area (PA) networks need to be able to accommodate climate-driven range shifts in wildlife if they are to continue to be effective in the future. Thus, we investigated geographical variation in the relationship between local temperature anomaly and the abundance of 61 waterbird species during the wintering season across Europe and North Africa during 1990-2015. We also compared the spatio-temporal effects on abundance of sites designated as PAs, Important Bird and Biodiversity Areas (IBAs), both, or neither designation (Unlisted). Waterbird abundance was positively correlated with temperature anomaly, with this pattern being strongest towards north and east Europe. Waterbird abundance was higher inside IBAs, whether they were legally protected or not. Trends in waterbird abundance were also consistently more positive inside both protected and unprotected IBAs across the whole study region, and were positive in Unlisted wetlands in southwestern Europe and North Africa. These results suggest that IBAs are important sites for wintering waterbirds, but also that populations are shifting to unprotected wetlands (some of which are IBAs). Such IBAs may therefore represent robust candidate sites to expand the network of legally protected wetlands under climate change in north-eastern Europe. These results underscore the need for monitoring to understand how the effectiveness of site networks is changing under climate change.
  • Lehikoinen, Petteri; Santangeli, Andrea; Jaatinen, Kim; Rajasärkkä, Ari; Lehikoinen, Aleksi (2019)
    Climate change is driving species to shift their distributions toward high altitudes and latitudes, while habitat loss and fragmentation may hamper species ability to follow their climatic envelope. These two drivers of change may act in synergy, with particularly disastrous impacts on biodiversity. Protected areas, PAs, may thus represent crucial buffers against the compounded effects of climate change and habitat loss. However, large-scale studies assessing the performance of PAs as such buffers remain scarce and are largely based on species occurrence data. Conversely, abundance data have proven to be more reliable for addressing changes in wildlife populations under climate change. We evaluated changes in bird abundance from the 1970s-80s to the 2000s inside and outside PAs at the trailing range edge of 30 northern bird species and at the leading range edge of 70 southern species. Abundances of retracting northern species were higher and declined less inside PAs at their trailing range edge. The positive effect of PAs on bird abundances was particularly marked in northern species that rely strongly on PAs, that is, their density distribution is largely confined within PAs. These species were nearly absent outside PAs in the 2000s. The abundances of southern species were in general lower inside PAs and increased less from the 70s-80s to 2000s. Nonetheless, species with high reliance on PAs had much higher abundances inside than outside PAs in the 2000s. These results show that PAs are essential in mitigating the retraction of northern species, but also facilitate northward expansions of southern species highly reliant on PAs. Our study provides empirical evidence documenting the role of PAs in facilitating species to adjust to rapidly changing climatic conditions, thereby contributing to the mitigation of impending biodiversity loss. PAs may thus allow time for initiating wider conservation programs on currently unprotected land.
  • Virkkala, Raimo; Pöyry, Juha; Heikkinen, Risto K.; Lehikoinen, Aleksi; Valkama, Jari (2014)
  • Robinson, Sinikka I.; McLaughlin, Órla B.; Marteinsdóttir, Bryndís; O'Gorman, Eoin J. (2018)
    1. Global warming is predicted to significantly alter species physiology, biotic interactions and thus ecosystem functioning, as a consequence of coexisting species exhibiting a wide range of thermal sensitivities. There is, however, a dearth of research examining warming impacts on natural communities. 2. Here, we used a natural warming experiment in Iceland to investigate the changes in above-ground terrestrial plant and invertebrate communities along a soil temperature gradient (10 degrees C-30 degrees C). 3. The alpha-diversity of plants and invertebrates decreased with increasing soil temperature, driven by decreasing plant species richness and increasing dominance of certain invertebrate species in warmer habitats. There was also greater species turnover in both plant and invertebrate communities with increasing pairwise temperature difference between sites. There was no effect of temperature on percentage cover of vegetation at the community level, driven by contrasting effects at the population level. 4. There was a reduction in the mean body mass and an increase in the total abundance of the invertebrate community, resulting in no overall change in community biomass. There were contrasting effects of temperature on the population abundance of various invertebrate species, which could be explained by differential thermal tolerances and metabolic requirements, or may have been mediated by changes in plant community composition. 5. Our study provides an important baseline from which the effect of changing environmental conditions on terrestrial communities can be tracked. It also contributes to our understanding of why community-level studies of warming impacts are imperative if we are to disentangle the contrasting thermal responses of individual populations.
  • Titeux, Nicolas; Maes, Dirk; Van Daele, Toon; Onkelinx, Thierry; Heikkinen, Risto K.; Romo, Helena; Garcia-Barros, Enrique; Munguira, Miguel L.; Thuiller, Wilfried; van Swaay, Chris A. M.; Schweiger, Oliver; Settele, Josef; Harpke, Alexander; Wiemers, Martin; Brotons, Lluis; Luoto, Miska (2017)
    Aim: Species distribution models built with geographically restricted data often fail to capture the full range of conditions experienced by species across their entire distribution area. Using such models to predict distribution shifts under future environmental change may, therefore, produce biased projections. However, restricted-scale models have the potential to include a larger sample of taxa for which distribution data are available and to provide finer-resolution projections that are better applied to conservation planning than the forecasts of broad-scale models. We examine the circumstances under which the projected shifts in species richness patterns derived from restricted-scale and broad-scale models are most likely to be similar. Location: Europe. Methods: The distribution of butterflies in Finland, Belgium/Netherlands and Spain was modelled based on restricted-scale (local) and broad-scale (continental) distribution and climate data. Both types of models were projected under future climate change scenarios to assess potential changes in species richness. Results: In Finland, species richness was projected to increase strongly based on restricted-scale models and to decrease slightly with broad-scale models. In Belgium/Netherlands, restricted-scale models projected a larger decrease in richness than broad-scale models. In Spain, both models projected a slight decrease in richness. We obtained similar projections based on restricted-scale and broad-scale models only in Spain because the climatic conditions available here covered the warm part of the distributions of butterflies better than in Finland and Belgium/Netherlands. Main conclusions: Restricted-scale models that fail to capture the warm part of species distributions produce biased estimates of future changes in species richness when projected under climatic conditions with no modern analogue in the study area. We recommend the use of distribution data beyond the boundaries of the study area to capture the part of the species response curves reflecting the climatic conditions that will prevail within that area in the future.
  • Lehikoinen, Aleksi; Lindström, Åke; Santangeli, Andrea; Sirkiä, Päivi M.; Brotons, Lluis; Devictor, Vincent; Elts, Jaanus; Foppen, Ruud P. B.; Heldbjerg, Henning; Herrando, Sergi; Herremans, Marc; Hudson, Marie-Anne R.; Jiguet, Frederic; Johnston, Alison; Lorrilliere, Romain; Marjakangas, Emma-Liina; Michel, Nicole L.; Moshoj, Charlotte M.; Nellis, Renno; Paquet, Jean-Yves; Smith, Adam C.; Szep, Tibor; van Turnhout, Chris (2021)
    Global climate change is driving species' distributions towards the poles and mountain tops during both non-breeding and breeding seasons, leading to changes in the composition of natural communities. However, the degree of season differences in climate-driven community shifts has not been thoroughly investigated at large spatial scales. We compared the rates of change in the community composition during both winter (non-breeding season) and summer (breeding) and their relation to temperature changes. Based on continental-scale data from Europe and North America, we examined changes in bird community composition using the community temperature index (CTI) approach and compared the changes with observed regional temperature changes during 1980-2016. CTI increased faster in winter than in summer. This seasonal discrepancy is probably because individuals are less site-faithful in winter, and can more readily shift their wintering sites in response to weather in comparison to the breeding season. Regional long-term changes in community composition were positively associated with regional temperature changes during both seasons, but the pattern was only significant during summer due to high annual variability in winter communities. Annual changes in community composition were positively associated with the annual temperature changes during both seasons. Our results were broadly consistent across continents, suggesting some climate-driven restructuring in both European and North American avian communities. Because community composition has changed much faster during the winter than during the breeding season, it is important to increase our knowledge about climate-driven impacts during the less-studied non-breeding season.