Browsing by Subject "RANGE TEMPORAL CORRELATIONS"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Auno, Sami; Lauronen, Leena; Wilenius, Juha; Peltola, Maria; Vanhatalo, Sampsa; Palva, Matias (2021)
    Objective: To examine the usability of long-range temporal correlations (LRTCs) in non-invasive localization of the epileptogenic zone (EZ) in refractory parietal lobe epilepsy (RPLE) patients. Methods: We analyzed 10 RPLE patients who had presurgical MEG and underwent epilepsy surgery. We quantified LRTCs with detrended fluctuation analysis (DFA) at four frequency bands for 200 cortical regions estimated using individual source models. We correlated individually the DFA maps to the distance from the resection area and from cortical locations of interictal epileptiform discharges (IEDs). Additionally, three clinical experts inspected the DFA maps to visually assess the most likely EZ locations. Results: The DFA maps correlated with the distance to resection area in patients with type II focal cortical dysplasia (FCD) (p < 0:05), but not in other etiologies. Similarly, the DFA maps correlated with the IED locations only in the FCD II patients. Visual analysis of the DFA maps showed high interobserver agreement and accuracy in FCD patients in assigning the affected hemisphere and lobe. Conclusions: Aberrant LRTCs correlate with the resection areas and IED locations. Significance: This methodological pilot study demonstrates the feasibility of approximating cortical LRTCs from MEG that may aid in the EZ localization and provide new non-invasive insight into the presurgical evaluation of epilepsy. (c) 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  • Bruining, Hilgo; Hardstone, Richard; Juarez-Martinez, Erika L.; Sprengers, Jan; Avramiea, Arthur-Ervin; Simpraga, Sonja; Houtman, Simon J.; Poil, Simon-Shlomo; Dallares, Eva; Palva, Satu; Oranje, Bob; Matias Palva, J.; Mansvelder, Huibert D.; Linkenkaer-Hansen, Klaus (2020)
    Balance between excitation (E) and inhibition (I) is a key principle for neuronal network organization and information processing. Consistent with this notion, excitation-inhibition imbalances are considered a pathophysiological mechanism in many brain disorders including autism spectrum disorder (ASD). However, methods to measure E/I ratios in human brain networks are lacking. Here, we present a method to quantify a functional E/I ratio (fE/I) from neuronal oscillations, and validate it in healthy subjects and children with ASD. We define structural E/I ratio in an in silico neuronal network, investigate how it relates to power and long-range temporal correlations (LRTC) of the network's activity, and use these relationships to design the fE/I algorithm. Application of this algorithm to the EEGs of healthy adults showed that fE/I is balanced at the population level and is decreased through GABAergic enforcement. In children with ASD, we observed larger fE/I variability and stronger LRTC compared to typically developing children (TDC). Interestingly, visual grading for EEG abnormalities that are thought to reflect E/I imbalances revealed elevated fE/I and LRTC in ASD children with normal EEG compared to TDC or ASD with abnormal EEG. We speculate that our approach will help understand physiological heterogeneity also in other brain disorders.
  • Matic, Vladimir; Cherian, Perumpillichira Joseph; Koolen, Ninah; Ansari, Amir H.; Naulaers, Gunnar; Govaert, Paul; Van Huffel, Sabine; De Vos, Maarten; Vanhatalo, Sampsa (2015)
    A quantitative and objective assessment of background electroencephalograph (EEG) in sick neonates remains an everyday clinical challenge. We studied whether long range temporal correlations quantified by detrended fluctuation analysis (DFA) could be used in the neonatal EEG to distinguish different grades of abnormality in the background EEG activity. Long-term EEG records of 34 neonates were collected after perinatal asphyxia, and their background was scored in 1 h epochs (8 h in each neonate) as mild, moderate or severe. We applied DFA on 15 min long, non-overlapping EEG epochs (n = 1088) filtered from 3 to 8 Hz. Our formal feasibility study suggested that DFA exponent can be reliably assessed in only part of the EEG epochs, and in only relatively short time scales (10-60 s), while it becomes ambiguous if longer time scales are considered. This prompted further exploration whether paradigm used for quantifying multifractal DFA (MF-DFA) could be applied in a more efficient way, and whether metrics from MF-DFA paradigm could yield useful benchmark with existing clinical EEG gradings. Comparison of MF-DFA metrics showed a significant difference between three visually assessed background EEG grades. MF-DFA parameters were also significantly correlated to interburst intervals quantified with our previously developed automated detector. Finally, we piloted a monitoring application of MF-DFA metrics and showed their evolution during patient recovery from asphyxia. Our exploratory study showed that neonatal EEG can be quantified using multifractal metrics, which might offer a suitable parameter to quantify the grade of EEG background, or to monitor changes in brain state that take place during long-term brain monitoring.