Browsing by Subject "RAT"

Sort by: Order: Results:

Now showing items 1-20 of 36
  • Guirado, Ramon; Perez-Rando, Marta; Ferragud, Antonio; Gutierrez-Castellanos, Nicolas; Umemori, Juzoh; Carceller, Hector; Nacher, Juan; Castillo-Gómez, Esther (2020)
    The medial prefrontal cortex (mPFC) has been classically defined as the brain region responsible for higher cognitive functions, including the decision-making process. Ample information has been gathered during the last 40 years in an attempt to understand how it works. We now know extensively about the connectivity of this region and its relationship with neuromodulatory ascending projection areas, such as the dorsal raphe nucleus (DRN) or the ventral tegmental area (VTA). Both areas are well-known regulators of the reward-based decision-making process and hence likely to be involved in processes like evidence integration, impulsivity or addiction biology, but also in helping us to predict the valence of our future actions: i.e., what is “good” and what is “bad.” Here we propose a hypothesis of a critical period, during which the inputs of the mPFC compete for target innervation, establishing specific prefrontal network configurations in the adult brain. We discuss how these different prefrontal configurations are linked to brain diseases such as addiction or neuropsychiatric disorders, and especially how drug abuse and other events during early life stages might lead to the formation of more vulnerable prefrontal network configurations. Finally, we show different promising pharmacological approaches that, when combined with the appropriate stimuli, will be able to re-establish these functional prefrontocortical configurations during adulthood.
  • Rotgers, E.; Cisneros-Montalvo, S.; Jahnukainen, K.; Sandholm, J.; Toppari, J.; Nurmio, M. (2015)
    Accurate analysis and quantification of different testicular cell populations are of central importance in studies of male reproductive biology. The traditional histomorphometric and immunohistochemical methods remain the gold standard in studying the complex dynamics of the testicular tissue. Through past years advances have been made in the application of flow cytometry for the rapid analysis of testicular cell populations. Detection of DNA content and of surface antigens and fluorescent reporters have been widely used to analyze and sort cells. Detection of intracellular antigens can broaden the possibilities of applying flow cytometry in studies of male reproduction. Here, we report a detailed protocol for the preparation of rat testicular tissue for detection of intracellular antigens by flow cytometry, and a pipeline for subsequent data analysis and troubleshooting. Rat testicular ontogenesis was chosen as the experimental model to validate the performance of the assay using vimentin and gamma H2AX as intracellular markers for the somatic and spermatogenic cells, respectively. The results show that the assay is reproducible and recapitulates the rat testis ontogenesis.
  • Aspelund, Aleksanteri; Antila, Salli; Proulx, Steven T.; Karlsen, Tine Veronica; Karaman, Sinem; Detmar, Michael; Wiig, Helge; Alitalo, Kari (2015)
    The central nervous system (CNS) is considered an organ devoid of lymphatic vasculature. Yet, part of the cerebrospinal fluid (CSF) drains into the cervical lymph nodes (LNs). The mechanism of CSF entry into the LNs has been unclear. Here we report the surprising finding of a lymphatic vessel network in the dura mater of the mouse brain. We show that dural lymphatic vessels absorb CSF from the adjacent subarachnoid space and brain interstitial fluid (ISF) via the glymphatic system. Dural lymphatic vessels transport fluid into deep cervical LNs (dcLNs) via foramina at the base of the skull. In a transgenic mouse model expressing a VEGF-C/D trap and displaying complete aplasia of the dural lymphatic vessels, macromolecule clearance from the brain was attenuated and transport from the subarachnoid space into dcLNs was abrogated. Surprisingly, brain ISF pressure and water content were unaffected. Overall, these findings indicate that the mechanism of CSF flow into the dcLNs is directly via an adjacent dural lymphatic network, which may be important for the clearance of macromolecules from the brain. Importantly, these results call for a reexamination of the role of the lymphatic system in CNS physiology and disease.
  • Elsilä, Lauri V.; Korhonen, Nuppu; Hyytiä, Petri; Korpi, Esa R. (2020)
    While interest in psychedelic drugs in the fields of psychiatry and neuroscience has re-emerged in recent last decades, the general understanding of the effects of these drugs remains deficient. In particular, there are gaps in knowledge on executive functions and goal-directed behaviors both in humans and in commonly used animal models. The effects of acute doses of psychedelic lysergic acid diethylamide (LSD) on reward-driven decision making were explored using the mouse version of the Iowa Gambling Task. A total of 15 mice were trained to perform in a touch-screen adaptation of the rodent version of the Iowa Gambling Task, after which single acute doses of LSD (0.025, 0.1, 0.2, 0.4 mg/kg), serotonin 2A receptor-selective agonist 25CN-NBOH (1.5 mg/kg), d-amphetamine (2.0 mg/kg), and saline were administered before the trial. 25CN-NBOH and the three lowest doses of LSD showed no statistically significant changes in option selection or in general functioning during the gambling task trials. The highest dose of LSD (0.4 mg/kg) significantly decreased premature responding and increased the omission rate, but had no effect on option selection in comparison with the saline control. Amphetamine significantly decreased the correct responses and premature responding while increasing the omission rate. In conclusion, mice can perform previously learned, reward-driven decision-making tasks while under the acute influence of LSD at a commonly used dose range.
  • Rozov, Stanislav V.; Zant, Janneke; Gurevicius, Kestutis; Porkka-Heiskanen, Tarja; Panula, Pertti (2016)
    Aim: Under natural conditions diurnal rhythms of biological processes of the organism are synchronized with each other and to the environmental changes by means of the circadian system. Disturbances of the latter affect hormonal levels, sleep-wakefulness cycle and cognitive performance. To study mechanisms of such perturbations animal models subjected to artificial photoperiods are often used. The goal of current study was to understand the effects of circadian rhythm disruption, caused by a short light-dark cycle regime, on activity of the cerebral cortex in rodents. Methods: We used electroencephalogram to assess the distribution of vigilance states, perform spectral analysis, and estimate the homeostatic sleep drive. In addition, we analyzed spontaneous locomotion of C57BL/6J mice under symmetric, 22-, 21-, and 20-h-long light-dark cycles using video recording and tracking methods. Results and Conclusions: We found that shortening of photoperiod caused a significant increase of slow wave activity during non-rapid eye movement sleep suggesting an elevation of sleep pressure under such conditions. While the rhythm of spontaneous locomotion was completely entrained by all light-dark cycles tested, periodic changes in the power of the theta- and gamma-frequency ranges during wakefulness gradually disappeared under 22- and 21-h-long light-dark cycles. This was associated with a significant increase in the theta-gamma phase-amplitude coupling during wakefulness. Our results thus provide deeper understanding of the mechanisms underlying the impairment of learning and memory retention, which is associated with disturbed circadian regulation.
  • Perala, Mia-Maria; Mannisto, Satu; Kaartinen, Niina E.; Kajantie, Eero; Osmond, Clive; Barker, David J. P.; Valsta, Liisa M.; Eriksson, Johan G. (2012)
  • Hemanthakumar, Karthik Amudhala; Fang, Shentong; Anisimov, Andrey; Mäyränpää, Mikko I.; Mervaala, Eero; Kivelä, Riikka (2021)
    Aging, obesity, hypertension, and physical inactivity are major risk factors for endothelial dysfunction and cardiovascular disease (CVD). We applied fluorescence-activated cell sorting (FACS), RNA sequencing, and bioinformatic methods to investigate the common effects of CVD risk factors in mouse cardiac endothelial cells (ECs). Aging, obesity, and pressure overload all upregulated pathways related to TGF-beta signaling and mesenchymal gene expression, inflammation, vascular permeability, oxidative stress, collagen synthesis, and cellular senescence, whereas exercise training attenuated most of the same pathways. We identified collagen chaperone Serpinhl (also called as Hsp47) to be significantly increased by aging and obesity and repressed by exercise training. Mechanistic studies demonstrated that increased SERPINH1 in human ECs induced mesenchymal properties, while its silencing inhibited collagen deposition. Our data demonstrate that CVD risk factors significantly remodel the transcriptomic landscape of cardiac ECs inducing inflammatory, senescence, and mesenchymal features. SERPINH1 was identified as a potential therapeutic target in ECs.
  • Albert, Katrina; Renko, Juho-Matti; Mätlik, Kert; Airavaara, Mikko; Voutilainen, Merja H. (2019)
    Cerebral dopamine neurotrophic factor (CDNF) has shown therapeutic potential in rodent and non-human primate models of Parkinson's disease by protecting the dopamine neurons from degeneration and even restoring their phenotype and function. Previously, neurorestorative efficacy of CDNF in the 6-hydroxydopamine (6-OHDA) model of Parkinson's disease as well as diffusion of the protein in the striatum (STR) has been demonstrated and studied. Here, experiments were performed to characterize the diffusion and transport of supra-nigral CDNF in non-lesioned rats. We injected recombinant human CDNF to the substantia nigra (SN) of naive male Wistar rats and analyzed the brains 2, 6, and 24 h after injections. We performed immunohistochemical stainings using an antibody specific to human CDNF and radioactivity measurements after injecting iodinated CDNF. Unlike the previously reported striatonigral retrograde transport seen after striatal injection, active anterograde transport of CDNF to the STR could not be detected after nigral injection. There was, however, clear diffusion of CDNF to the brain areas surrounding the SN, and CDNF colocalized with tyrosine hydroxylase (TH)-positive neurons. Overall, our results provide insight on how CDNF injected to the SN may act in this region of the brain.
  • Paavola, Anne; Bernards, Christopher M.; Rosenberg, Per H. (2016)
    In order to avoid the risks of sideeffects of epidural local anesthetics and opioids, the use of nonsteroidal anti-inflammatory drugs (NSAIDs) epidurally would be an interesting option of analgesic therapy. The fairly short duration of action of spinally administered NSAIDs, e.g., ibuprofen, may be prolonged by using controlled release poloxamer gel formulation. Using a microdialysis technique we studied the epidural and intrathecal pharmacokinetics of ibuprofen after its epidural administration as a poloxamer 407 formulation or a solution formulation. In addition, plasma ibuprofen concentrations were analyzed from central venous blood samples. Ibuprofen concentrations in the epidural space were significantly higher and longer lasting after the epidural gel injection compared with the epidural solution injection. The epidural AUC of ibuprofen was over threefold greater after epidural ibuprofen gel injection compared with the ibuprofen solution injection (p <0.001). The systemic absorption of ibuprofen from 25% poloxamer 407 gel was very low. The in situ forming poloxamer gel acted as a reservoir allowing targeted ibuprofen release at the epidural injection site and restricted ibuprofen molecules to a smaller spinal area. Ibuprofen diffusion from the epidural space to the intrathecal space was steady and prolonged. These results demonstrate that the use of epidurally injectable poloxamer gel can increase and prolong ibuprofen delivery from epidural space to the CSF enhancing thus ibuprofen entry into the central neuroaxis for spinal analgesia. Further toxicological and dose-finding studies are justified. (C) 2016 Elsevier B.V. All rights reserved.
  • Hewetson, Michael; Venner, Monica; Volquardsen, Jan; Sykes, Ben William; Hallowell, Gayle Davina; Vervuert, Ingrid; Fosgate, Geoffrey Theodore; Tulamo, Riitta-Mari (2018)
    Background: Equine gastric ulcer syndrome is an important cause of morbidity in weanling foals. Many foals are asymptomatic, and the development of an inexpensive screening test to ensure an early diagnosis is desirable. The objective of this study was to determine the diagnostic accuracy of blood sucrose for diagnosis of EGUS in weanling foals. Results: 45 foals were studied 7 days before and 14 days after weaning. The diagnostic accuracy of blood sucrose for diagnosis of gastric lesions (GL); glandular lesions (GDL); squamous lesions (SQL) and clinically significant gastric lesions (CSL) at 45 and 90 min after administration of 1 g/kg of sucrose via nasogastric intubation was assessed using ROC curves and calculating the AUC. For each lesion type, sucrose concentration in blood was compared to gastroscopy; and sensitivities (Se) and specificities (Sp) were calculated across a range of sucrose concentrations. Cut- off values were selected manually to optimize Se. Because of concerns over the validity of the gold standard, additional Se, Sp, and lesion prevalence data were subsequently estimated and compared using Bayesian latent class analysis. Using the frequentist approach, the prevalence of GL; GDL; SQL and CSL before weaning was 21; 9; 7 and 8% respectively; and increased to 98; 59; 97 and 82% respectively after weaning. At the selected cut- off, Se ranged from 84 to 95% and Sp ranged from 47 to 71%, depending upon the lesion type and time of sampling. In comparison, estimates of Se and Sp were consistently higher when using a Bayesian approach, with Se ranging from 81 to 97%; and Sp ranging from 77 to 97%, depending upon the lesion type and time of sampling. Conclusions: Blood sucrose is a sensitive test for detecting EGUS in weanling foals. Due to its poor specificity, it is not expected that the sucrose blood test will replace gastroscopy, however it may represent a clinically useful screening test to identify foals that may benefit from gastroscopy. Bayesian latent class analysis represents an alternative method to evaluate the diagnostic accuracy of the blood sucrose test in an attempt to avoid bias associated with the assumption that gastroscopy is a perfect test.
  • Polianskyte-Prause, Zydrune; Tolvanen, Tuomas A.; Lindfors, Sonja; Kon, Kanta; Hautala, Laura C.; Wang, Hong; Wada, Tsutomu; Tsuneki, Hiroshi; Sasaoka, Toshiyasu; Lehtonen, Sanna (2022)
    Ebselen, a multifunctional organoselenium compound, has been recognized as a potential treatment for diabetes-related disorders. However, the underlying mechanisms whereby ebselen regulates metabolic pathways remain elusive. We discovered that ebselen inhibits lipid phosphatase SHIP2 (Src homology 2 domain-containing inositol-5-phosphatase 2), an emerging drug target to ameliorate insulin resistance in diabetes. We found that ebselen directly binds to and inhibits the catalytic activity of the recombinant SHIP2 phosphatase domain and SHIP2 in cultured cells, the skeletal muscle and liver of the diabetic db/db mice, and the liver of the SHIP2 overexpressing (SHIP2-Tg) mice. Ebselen increased insulin-induced Akt phosphorylation in cultured myotubes, enhanced insulin sensitivity and protected liver tissue from lipid peroxidation and inflammation in the db/db mice, and improved glucose tolerance more efficiently than metformin in the SHIP2-Tg mice. SHIP2 overexpression abrogated the ability of ebselen to induce glucose uptake and reduce ROS production in myotubes and blunted the effect of ebselen to inhibit SHIP2 in the skeletal muscle of the SHIP2-Tg mice. Our data reveal ebselen as a potent SHIP2 inhibitor and demonstrate that the ability of ebselen to ameliorate insulin resistance and act as an antioxidant is at least in part mediated by the reduction of SHIP2 activity.
  • Tarvainen, Timo; Siren, Jukka; Kokkola, Arto; Sallinen, Ville (2020)
    Importance Both hydrocortisone and pasireotide have been shown in randomized clinical trials to be effective in reducing postoperative complications of pancreatic surgery, but to date no randomized clinical trial has evaluated the effectiveness of pasireotide compared with hydrocortisone. Objective To assess the noninferiority of hydrocortisone compared with pasireotide in reducing complications after partial pancreatectomy. Design, Setting, and Participants A noninferiority, parallel-group, individually randomized clinical trial was conducted at a single academic center between May 19, 2016, and December 17, 2018. Outcome collectors and analyzers were blinded. A total of 281 patients undergoing partial pancreatectomy were assessed for inclusion. Patients younger than 18 years, those allergic to hydrocortisone or pasireotide, patients undergoing pancreaticoduodenectomy with hard pancreas or dilated pancreatic duct, and patients not eventually undergoing partial pancreatectomy were excluded. Modified intention-to-treat analysis was used in determination of the results. Interventions Treatment included pasireotide, 900 mu g, subcutaneously twice a day for 7 days or hydrocortisone, 100 mg, intravenously 3 times a day for 3 days. Main Outcomes and Measures The primary outcome was the Comprehensive Complication Index (CCI) score within 30 days. The noninferiority limit was set to 9 CCI points. Results Of the 281 patients (mean [SD] age, 63.8 years) assessed for eligibility, 168 patients (mean [SD] age, 63.6 years) were randomized and 126 were included in the modified intention-to-treat analyses. Sixty-three patients received pasireotide (35 men [56%]; median [interquartile range] age, 64 [56-70] years) and 63 patients received hydrocortisone (25 men [40%]; median [interquartile range] age, 67 [56-73] years). The mean (SD) CCI score was 23.94 (17.06) in the pasireotide group and 30.11 (20.47) in the hydrocortisone group (mean difference, -6.16; 2-sided 90% CI, -11.73 to -0.60), indicating that hydrocortisone was not noninferior. Postoperative pancreatic fistula was detected in 34 patients (54%) in the pasireotide group and 39 patients (62%) in the hydrocortisone group (odds ratio, 1.39; 95% CI, 0.68-2.82; P = .37). One patient in the pasireotide group and 2 patients in the hydrocortisone group died within 30 days. In subgroup analyses of patients undergoing distal pancreatectomy, the CCI score was a mean of 10.3 points lower (mean [SD], 16.03 [11.94] vs 26.28 [21.76]; 2-sided 95% CI, -19.34 to -2.12; P = .03) and postoperative pancreatic fistula rate was lower (37% vs 67%; P = .02) in the pasireotide group compared with the hydrocortisone group. Conclusions and Relevance In this study, hydrocortisone was not noninferior compared with pasireotide in patients undergoing partial pancreatectomy. Pasireotide may be more effective than hydrocortisone in patients undergoing distal pancreatectomy.
  • Omairi, Saleh; Matsakas, Antonios; Degens, Hans; Kretz, Oliver; Hansson, Kenth-Arne; Solbra, Andreas Vavang; Bruusgaard, Jo C.; Joch, Barbara; Sartori, Roberta; Giallourou, Natasa; Mitchell, Robert; Collins-Hooper, Henry; Foster, Keith; Pasternack, Arja; Ritvos, Olli; Sandri, Marco; Narkar, Vihang; Swann, Jonathan R.; Huber, Tobias B.; Patel, Ketan (2016)
    A central tenet of skeletal muscle biology is the existence of an inverse relationship between the oxidative fibre capacity and its size. However, robustness of this relationship is unknown. We show that superimposition of Estrogen-related receptor gamma (Erry) on the myostatin (Mtn) mouse null background (Mtn(-/-)Err gamma(Tg/+)) results in hypertrophic muscle with a high oxidative capacity thus violating the inverse relationship between fibre size and oxidative capacity. We also examined the canonical view that oxidative muscle phenotype positively correlate with Satellite cell number, the resident stem cells of skeletal muscle. Surprisingly, hypertrophic fibres from Mtn(-/-)Err gamma(Tg/+) mouse showed satellite cell deficit which unexpectedly did not affect muscle regeneration. These observations 1) challenge the concept of a constraint between fibre size and oxidative capacity and 2) indicate the important role of the microcirculation in the regenerative capacity of a muscle even when satellite cell numbers are reduced.
  • Toth, Melinda E.; Sarkozy, Marta; Szucs, Gergo; Dukay, Brigitta; Hajdu, Petra; Zvara, Agnes; Puskas, Laszlo G.; Szebeni, Gabor J.; Ruppert, Zsofia; Csonka, Csaba; Kovacs, Ferenc; Kriston, Andras; Horvath, Peter; Kovari, Bence; Cserni, Gabor; Csont, Tamas; Santha, Miklos (2022)
    Background Metabolic syndrome (MetS) refers to a cluster of co-existing cardio-metabolic risk factors, including visceral obesity, dyslipidemia, hyperglycemia with insulin resistance, and hypertension. As there is a close link between MetS and cardiovascular diseases, we aimed to investigate the sex-based differences in MetS-associated heart failure (HF) and cardiovascular response to regular exercise training (ET). Methods High-fat diet-fed male and female APOB-100 transgenic (HFD/APOB-100, 3 months) mice were used as MetS models, and age- and sex-matched C57BL/6 wild-type mice on standard diet served as healthy controls (SD/WT). Both the SD/WT and HFD/APOB-100 mice were divided into sedentary and ET groups, the latter running on a treadmill (0.9 km/h) for 45 min 5 times per week for 7 months. At month 9, transthoracic echocardiography was performed to monitor cardiac function and morphology. At the termination of the experiment at month 10, blood was collected for serum low-density lipoprotein (LDL)- and high-density lipoprotein (HDL)-cholesterol measurements and homeostatic assessment model for insulin resistance (HOMA-IR) calculation. Cardiomyocyte hypertrophy and fibrosis were assessed by histology. Left ventricular expressions of selected genes associated with metabolism, inflammation, and stress response were investigated by qPCR. Results Both HFD/APOB-100 males and females developed obesity and hypercholesterolemia; however, only males showed insulin resistance. ET did not change these metabolic parameters. HFD/APOB-100 males showed echocardiographic signs of mild HF with dilated ventricles and thinner walls, whereas females presented the beginning of left ventricular hypertrophy. In response to ET, SD/WT males developed increased left ventricular volumes, whereas females responded with physiologic hypertrophy. Exercise-trained HFD/APOB-100 males presented worsening HF with reduced ejection fraction; however, ET did not change the ejection fraction and reversed the echocardiographic signs of left ventricular hypertrophy in HFD/APOB-100 females. The left ventricular expression of the leptin receptor was higher in females than males in the SD/WT groups. Left ventricular expression levels of stress response-related genes were higher in the exercise-trained HFD/APOB-100 males and exercise-trained SD/WT females than exercise-trained SD/WT males. Conclusions HFD/APOB-100 mice showed sex-specific cardiovascular responses to MetS and ET; however, left ventricular gene expressions were similar between the groups except for leptin receptor and several stress response-related genes.
  • Karhu, S. Tuuli; Kinnunen, Sini M.; Tölli, Marja; Välimäki, Mika J.; Szabo, Zoltan; Talman, Virpi; Ruskoaho, Heikki (2020)
    Doxorubicin is a widely used anticancer drug that causes dose-related cardiotoxicity. The exact mechanisms of doxorubicin toxicity are still unclear, partly because most in vitro studies have evaluated the effects of short-term high-dose doxorubicin treatments. Here, we developed an in vitro model of long-term low-dose administration of doxorubicin utilizing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Moreover, given that current strategies for prevention and management of doxorubicin-induced cardiotoxicity fail to prevent cancer patients developing heart failure, we also investigated whether the GATA4-targeted compound 3i-1000 has cardioprotective potential against doxorubicin toxicity both in vitro and in vivo. The final doxorubicin concentration used in the chronic toxicity model in vitro was chosen based on cell viability data evaluation. Exposure to doxorubicin at the concentrations of 1-3 mu M markedly reduced (60%) hiPSC-CM viability already within 48 h, while a 14-day treatment with 100 nM doxorubicin concentration induced only a modest 26% reduction in hiPCS-CM viability. Doxorubicin treatment also decreased DNA content in hiPSC-CMs. Interestingly, the compound 3i-1000 attenuated doxorubicin-induced increase in pro-B-type natriuretic peptide (proBNP) expression and caspase-3/7 activation in hiPSC-CMs. Moreover, treatment with 3i-1000 for 2 weeks (30 mg/kg/day, i.p.) inhibited doxorubicin cardiotoxicity by restoring left ventricular ejection fraction and fractional shortening in chronic in vivo rat model. In conclusion, the results demonstrate that long-term exposure of hiPSC-CMs can be utilized as an in vitro model of delayed doxorubicin-induced toxicity and provide in vitro and in vivo evidence that targeting GATA4 may be an effective strategy to counteract doxorubicin-induced cardiotoxicity.
  • Chen, Yan; Stegaev, Vasily; Kouri, Vesa-Petteri; Sillat, Tarvo; Chazot, Paul L.; Stark, Holger; Wen, Jian Guo; Konttinen, Yrjo T. (2015)
    To date, conventional and/or novel histamine receptors (HRs) have not been investigated in mouse skeletal myogenesis. Therefore, the present study aimed to investigate the HR-subtypes in skeletal myogenesis. The myogenesis of C2C12 skeletal myoblasts was evaluated using desmin, myogenin and myosin heavy chain (Myh) as early, intermediate and late differentiation markers, respectively. Reverse transcription-quantitative polymerase chain reaction and immunostaining were performed and the messenger RNA (mRNA) expression levels of the HR-subtypes and markers were determined. H1R mRNA was found to be highly expressed in myoblasts at day 0; however, the expression levels were reduced as differentiation progressed. By contrast, H2R mRNA expression remained constant, while H3R mRNA expression increased by 28-, 103- and 198-fold at days 2, 4 and 6 compared with the baseline level (day 0), respectively. In addition, Myh expression increased by 7,718-, 94,487- and 286,288-fold on days 2, 4 and 6 compared with the baseline expression level (day 0). Weak positive staining of the cells for H3R protein was observed on day 2, whereas highly positive staining was observed on days 4 and 6. HR expression during myogenesis was, in part, regulated by the stage of differentiation. These results along with previous findings indicated possible involvement of H1R in the regulation of progenitor cell mitogenesis and of H2R in the relaxation of acetylcholine-stimulated contraction of muscle cells, following the activation of professional histamine-producing cells, including mast cells. By contrast, H3R may participate in the regulation of specialized myocyte functions, potentially by maintaining the relaxed state under the influence of constitutive H3R activity and low histamine concentrations, locally produced/released by non-professional histamine-producing cells.
  • Penttinen, Anna-Maija; Parkkinen, Ilmari; Blom, Sami; Kopra, Jaakko; Andressoo, Jaan-Olle; Pitkänen, Kari; Voutilainen, Merja H.; Saarma, Mart; Airavaara, Mikko (2018)
    Unbiased estimates of neuron numbers within substantia nigra are crucial for experimental Parkinson's disease models and gene-function studies. Unbiased stereological counting techniques with optical fractionation are successfully implemented, but are extremely laborious and time-consuming. The development of neural networks and deep learning has opened a new way to teach computers to count neurons. Implementation of a programming paradigm enables a computer to learn from the data and development of an automated cell counting method. The advantages of computerized counting are reproducibility, elimination of human error and fast high-capacity analysis. We implemented whole-slide digital imaging and deep convolutional neural networks (CNN) to count substantia nigra dopamine neurons. We compared the results of the developed method against independent manual counting by human observers and validated the CNN algorithm against previously published data in rats and mice, where tyrosine hydroxylase (TH)-immunoreactive neurons were counted using unbiased stereology. The developed CNN algorithm and fully cloud-embedded Aiforia (TM) platform provide robust and fast analysis of dopamine neurons in rat and mouse substantia nigra.
  • Birling, M. C.; Fray, M. D.; Kasparek, P.; Kopkanova, J.; Massimi, M.; Matteoni, R.; Montoliu, L.; Nutter, L. M.J.; Raspa, M.; Rozman, J.; Ryder, E. J.; Scavizzi, F.; Voikar, V.; Wells, S.; Pavlovic, G.; Teboul, L. (2022)
    The reproducibility of research using laboratory animals requires reliable management of their quality, in particular of their genetics, health and environment, all of which contribute to their phenotypes. The point at which these biological materials are transferred between researchers is particularly sensitive, as it may result in a loss of integrity of the animals and/or their documentation. Here, we describe the various aspects of laboratory animal quality that should be confirmed when sharing rodent research models. We also discuss how repositories of biological materials support the scientific community to ensure the continuity of the quality of laboratory animals. Both the concept of quality and the role of repositories themselves extend to all exchanges of biological materials and all networks that support the sharing of these reagents.
  • Laukkanen, Virpi; Kärkkäinen, Olli; Kautiainen, Hannu; Tiihonen, Jari; Storvik, Markus (2019)
    The function of group I metabotropic glutamate receptors mGluR1 and mGluR5 is involved in the hyperglutamatergic state caused by chronic alcohol. Preclinical studies suggest that group I mGluR modulation could serve as a novel treatment of alcoholism. Considering the wide role of glutamatergic neurochemistry in addiction, group I mGluR binding was studied in brain areas involved in decision-making, learning and memory. Post-mortem whole hemisphere autoradiography was used to study the binding density of [H-3] quisqualic acid, a potent group I mGluR agonist, in 9 Cloninger type 1 alcoholics, 8 Cloninger type 2 alcoholics and 10 controls. Binding was studied in the dorsal striatum, hippocampus and cortex. Alcoholics displayed a trend towards increased [ H-3] quisqualic acid binding in all brain areas. The most robust findings were in the putamen (p = 0.006) and anterior insula (p = 0.005), where both alcoholic subtypes displayed increased binding compared to the controls. These findings suggest altered group I mGluR function in alcoholic subjects in the dorsal striatum, which is involved in habitual learning, and in the anterior insula, which has a pivotal role in the perception of bodily sensations. Increased [H-3] quisqualic acid binding might suggest a beneficial impact of mGluR1/5 modulators in the treatment of alcoholism.
  • Abdurakhmanova, Shamsiiat; Grotell, Milo; Kauhanen, Jenna; Linden, Anni-Maija; Korpi, Esa R.; Panula, Pertti (2020)
    Histamine/gamma-aminobutyric acid (GABA) neurons of posterior hypothalamus send wide projections to many brain areas and participate in stabilizing the wake state. Recent research has suggested that GABA released from the histamine/GABA neurons acts on extrasynaptic GABA(A) receptors and balances the excitatory effect of histamine. In the current study, we show the presence of vesicular GABA transporter mRNA in a majority of quantified hypothalamic histaminergic neurons, which suggest vesicular release of GABA. As histamine/GABA neurons form conventional synapses infrequently, it is possible that GABA released from these neurons diffuses to target areas by volume transmission and acts on extrasynaptic GABA receptors. To investigate this hypothesis, mice lacking extrasynaptic GABA(A) receptor delta subunit (Gabrd KO) were used. A pharmacological approach was employed to activate histamine/GABA neurons and induce histamine and presumably, GABA, release. Control and Gabrd KO mice were treated with histamine receptor 3 (Hrh3) inverse agonists ciproxifan and pitolisant, which block Hrh3 autoreceptors on histamine/GABA neurons and histamine-dependently promote wakefulness. Low doses of ciproxifan (1 mg/kg) and pitolisant (5 mg/kg) reduced locomotion in Gabrd KO, but not in WT mice. EEG recording showed that Gabrd KO mice were also more sensitive to the wake-promoting effect of ciproxifan (3 mg/kg) than control mice. Low frequency delta waves, associated with NREM sleep, were significantly suppressed in Gabrd KO mice compared with the WT group. Ciproxifan-induced wakefulness was blocked by histamine synthesis inhibitor alpha-fluoromethylhistidine (alpha FMH). The findings indicate that both histamine and GABA, released from histamine/GABA neurons, are involved in regulation of brain arousal states and delta-containing subunit GABA(A) receptors are involved in mediating GABA response.