Browsing by Subject "REACTIVATION"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Lesnikova, Angelina; Casarotto, Plinio; Fred, Senem Merve; Voipio, Mikko; Winkel, Frederike; Stenizeig, Anna; Antila, Hanna; Umemori, Juzoh; Biojone, Caroline; Castrén, Eero (2021)
    Perineuronal nets (PNNs) are an extracellular matrix structure rich in chondroitin sulfate proteoglycans (CSPGs), which preferentially encase parvalbumin-containing (PV+) interneurons. PNNs restrict cortical network plasticity but the molecular mechanisms involved are unclear. We found that reactivation of ocular dominance plasticity in the adult visual cortex induced by chondroitinase ABC (chABC)-mediated PNN removal requires intact signaling by the neurotrophin receptor TRKB in PV+ neurons. Additionally, we demonstrate that chABC increases TRKB phosphorylation (pTRKB), while PNN component aggrecan attenuates brain-derived neurotrophic factor (BDNF)-induced pTRKB in cortical neurons in culture. We further found that protein tyrosine phosphatase sigma (PTP sigma, PTPRS), receptor for CSPGs, interacts with TRKB and restricts TRKB phosphorylation. PTP sigma deletion increases phosphorylation of TRKB in vitro and in vivo in male and female mice, and juvenile-like plasticity is retained in the visual cortex of adult PTP sigma-deficient mice (PTP sigma(+/-)). The antidepressant drug fluoxetine, which is known to promote TRKB phosphorylation and reopen critical period-like plasticity in the adult brain, disrupts the interaction between TRKB and PTP sigma by binding to the transmembrane domain of TRKB. We propose that both chABC and fluoxetine reopen critical period-like plasticity in the adult visual cortex by promoting TRKB signaling in PV+ neurons through inhibition of TRKB dephosphorylation by the PTP sigma-CSPG complex.
  • Leminen, Miika M.; Virkkala, Jussi; Saure, Emma; Paajanen, Teemu; Zee, Phyllis C.; Santostasi, Giovanni; Hublin, Christer; Müller, Kiti; Porkka-Heiskanen, Tarja; Huotilainen, Minna; Paunio, Tiina (2017)
    Introduction: Slow-wave sleep (SWS) slow waves and sleep spindle activity have been shown to be crucial for memory consolidation. Recently, memory consolidation has been causally facilitated in human participants via auditory stimuli phase-locked to SWS slow waves. Aims: Here, we aimed to develop a new acoustic stimulus protocol to facilitate learning and to validate it using different memory tasks. Most importantly, the stimulation setup was automated to be applicable for ambulatory home use. Methods: Fifteen healthy participants slept 3 nights in the laboratory. Learning was tested with 4 memory tasks (word pairs, serial finger tapping, picture recognition, and face-name association). Additional questionnaires addressed subjective sleep quality and overnight changes in mood. During the stimulus night, auditory stimuli were adjusted and targeted by an unsupervised algorithm to be phase-locked to the negative peak of slow waves in SWS. During the control night no sounds were presented. Results: Results showed that the sound stimulation increased both slow wave (p =.002) and sleep spindle activity (p Conclusions: We showed that the memory effect of the SWS-targeted individually triggered single-sound stimulation is specific to verbal associative memory. Moreover, the ambulatory and automated sound stimulus setup was promising and allows for a broad range of potential follow-up studies in the future.
  • Hieta, Niina; Hiltunen-Back, Eija (2016)
    Recurrent vulvar ulceration is usually caused by herpes simplex virus (HSV) type 1 and 2 infections. Differential diagnosis includes erosive lichen planus, lichen sclerosus, mucous membrane pemphigoid, pemphigus, and Behcet's disease. Lipschutz acute vulvar ulcer, occurring in adolescent women, is a non-recurring, rare ulcer associated with an immunologic reaction to a distant source of infection or inflammation (1). We report here the first case of human herpes virus 7 (HHV-7) in recurrent vulvar ulceration.
  • Awad, Shady Adnan; Kankainen, Matti; Ojala, Teija; Koskenvesa, Perttu; Eldfors, Samuli; Ghimire, Bishwa; Kumar, Ashwini; Kytölä, Soili; Kamel, Mahmoud M.; Heckman, Caroline A.; Porkka, Kimmo; Mustjoki, Satu (2020)
    Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm accounting for similar to 15% of all leukemia. Progress of the disease from an indolent chronic phase to the more aggressive accelerated phase or blast phase (BP) occurs in a minority of cases and is associated with an accumulation of somatic mutations. We performed genetic profiling of 85 samples and transcriptome profiling of 12 samples from 59 CML patients. We identified recurrent somatic mutations in ABL1 (37%), ASXL1 (26%), RUNX1 (16%), and BCOR (16%) in the BP and observed that mutation signatures in the BP resembled those of acute myeloid leukemia (AML). We found that mutation load differed between the indolent and aggressive phases and that nonoptimal responders had more nonsilent mutations than did optimal responders at the time of diagnosis, as well as in follow-up. Using RNA sequencing, we identified other than BCR-ABL1 cancer-associated hybrid genes in 6 of the 7 BP samples. Uncovered expression alterations were in turn associated with mechanisms and pathways that could be targeted in CML management and by which somatic alterations may emerge in CML. Last, we showed the value of genetic data in CML management in a personalized medicine setting.