Browsing by Subject "RECOMBINATION"

Sort by: Order: Results:

Now showing items 1-20 of 30
  • Purps, Josephine; Siegert, Sabine; Willuweit, Sascha; Nagy, Marion; Alves, Cintia; Salazar, Renato; Angustia, Sheila M. T.; Santos, Lorna H.; Anslinger, Katja; Bayer, Birgit; Ayub, Qasim; Wei, Wei; Xue, Yali; Tyler-Smith, Chris; Bafalluy, Miriam Baeta; Martinez-Jarreta, Begona; Egyed, Balazs; Balitzki, Beate; Tschumi, Sibylle; Ballard, David; Court, Denise Syndercombe; Barrantes, Xinia; Bassler, Gerhard; Wiest, Tina; Berger, Burkhard; Niederstaetter, Harald; Parson, Walther; Davis, Carey; Budowle, Bruce; Burri, Helen; Borer, Urs; Koller, Christoph; Carvalho, Elizeu F.; Domingues, Patricia M.; Chamoun, Wafaa Takash; Coble, Michael D.; Hill, Carolyn R.; Corach, Daniel; Caputo, Mariela; D'Amato, Maria E.; Davison, Sean; Decorte, Ronny; Larmuseau, Maarten H. D.; Ottoni, Claudio; Rickards, Olga; Lu, Di; Jiang, Chengtao; Dobosz, Tadeusz; Jonkisz, Anna; Frank, William E.; Furac, Ivana; Gehrig, Christian; Castella, Vincent; Grskovic, Branka; Haas, Cordula; Wobst, Jana; Hadzic, Gavrilo; Drobnic, Katja; Honda, Katsuya; Hou, Yiping; Zhou, Di; Li, Yan; Hu, Shengping; Chen, Shenglan; Immel, Uta-Dorothee; Lessig, Rudiger; Jakovski, Zlatko; Ilievska, Tanja; Klann, Anja E.; Garcia, Cristina Cano; de Knijff, Peter; Kraaijenbrink, Thirsa; Kondili, Aikaterini; Miniati, Penelope; Vouropoulou, Maria; Kovacevic, Lejla; Marjanovic, Damir; Lindner, Iris; Mansour, Issam; Al-Azem, Mouayyad; El Andari, Ansar; Marino, Miguel; Furfuro, Sandra; Locarno, Laura; Martin, Pablo; Luque, Gracia M.; Alonso, Antonio; Miranda, Luis Souto; Moreira, Helena; Mizuno, Natsuko; Iwashima, Yasuki; Moura Neto, Rodrigo S.; Nogueira, Tatiana L. S.; Silva, Rosane; Nastainczyk-Wulf, Marina; Edelmann, Jeanett; Kohl, Michael; Nie, Shengjie; Wang, Xianping; Cheng, Baowen; Nunez, Carolina; Martinez de Pancorbo, Marian; Olofsson, Jill K.; Morling, Niels; Onofri, Valerio; Tagliabracci, Adriano; Pamjav, Horolma; Volgyi, Antonia; Barany, Gusztav; Pawlowski, Ryszard; Maciejewska, Agnieszka; Pelotti, Susi; Pepinski, Witold; Abreu-Glowacka, Monica; Phillips, Christopher; Cardenas, Jorge; Rey-Gonzalez, Danel; Salas, Antonio; Brisighelli, Francesca; Capelli, Cristian; Toscanini, Ulises; Piccinini, Andrea; Piglionica, Marilidia; Baldassarra, Stefania L.; Ploski, Rafal; Konarzewska, Magdalena; Jastrzebska, Emila; Robino, Carlo; Sajantila, Antti; Palo, Jukka U.; Guevara, Evelyn; Salvador, Jazelyn; Corazon De Ungria, Maria; Russell Rodriguez, Jae Joseph; Schmidt, Ulrike; Schlauderer, Nicola; Saukko, Pekka; Schneider, Peter M.; Sirker, Miriam; Shin, Kyoung-Jin; Oh, Yu Na; Skitsa, Iulia; Ampati, Alexandra; Smith, Tobi-Gail; de Calvit, Lina Solis; Stenzl, Vlastimil; Capal, Thomas; Tillmar, Andreas; Nilsson, Helena; Turrina, Stefania; De Leo, Domenico; Verzeletti, Andrea; Cortellini, Venusia; Wetton, Jon H.; Gwynne, Gareth M.; Jobling, Mark A.; Whittle, Martin R.; Sumita, Denilce R.; Wolanska-Nowak, Paulina; Yong, Rita Y. Y.; Krawczak, Michael; Nothnagel, Michael; Roewer, Lutz (2014)
    In a worldwide collaborative effort, 19,630 Y-chromosomes were sampled from 129 different populations in 51 countries. These chromosomes were typed for 23 short-tandem repeat (STR) loci (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS385ab, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS635, GATAH4, DYS481, DYS533, DYS549, DYS570, DYS576, and DYS643) and using the PowerPlex Y23 System (PPY23, Promega Corporation, Madison, WI). Locus-specific allelic spectra of these markers were determined and a consistently high level of allelic diversity was observed. A considerable number of null, duplicate and off-ladder alleles were revealed. Standard single-locus and haplotype-based parameters were calculated and compared between subsets of Y-STR markers established for forensic casework. The PPY23 marker set provides substantially stronger discriminatory power than other available kits but at the same time reveals the same general patterns of population structure as other marker sets. A strong correlation was observed between the number of Y-STRs included in a marker set and some of the forensic parameters under study. Interestingly a weak but consistent trend toward smaller genetic distances resulting from larger numbers of markers became apparent.
  • Sipola, Aleksi; Marttinen, Pekka; Corander, Jukka (2018)
    The advent of genomic data from densely sampled bacterial populations has created a need for flexible simulators by which models and hypotheses can be efficiently investigated in the light of empirical observations. Bacmeta provides fast stochastic simulation of neutral evolution within a large collection of interconnected bacterial populations with completely adjustable connectivity network. Stochastic events of mutations, recombinations, insertions/deletions, migrations and micro-epidemics can be simulated in discrete non-overlapping generations with a Wright-Fisher model that operates on explicit sequence data of any desired genome length. Each model component, including locus, bacterial strain, population and ultimately the whole metapopulation, is efficiently simulated using C++ objects and detailed metadata from each level can be acquired. The software can be executed in a cluster environment using simple textual input files, enabling, e.g. large-scale simulations and likelihood-free inference. Availability and implementation: Bacmeta is implemented with C++ for Linux, Mac and Windows. It is available at https://bitbucket.org/aleksisipola/bacmeta under the BSD 3-clause license. Contact: aleksi.sipola@helsinki.fi or jukka.corander@medisin.uio.no Supplementary information: Supplementary data are available at Bioinformatics online.
  • Cheng, Lu; Connor, Thomas R.; Aanensen, David M.; Spratt, Brian G.; Corander, Jukka (2011)
  • Tran, Quoc Ty; Jatsenko, Tatjana; Poolamets, Olev; Tsuiko, Olga; Lubenets, Dmitri; Reimand, Tiia; Punab, Margus; Peters, Maire; Salumets, Andres (2019)
    PurposeThe purpose of this study was to develop a feasible approach for single sperm isolation and chromosome analysis by next-generation sequencing (NGS).MethodsSingle sperm cells were isolated from semen samples of normozoospermic male and an infertile reciprocal translocation (RcT) carrier with the 46,XY,t(7;13)(p12;q12.1) karyotype using the optimized fluorescence-activated cell sorting (FACS) technique. Genome profiling was performed using NGS.ResultsFollowing whole-genome amplification, NGS,and quality control, the final chromosome analysis was performed on 31 and 6 single cell samples derived from the RcT carrier and normozoospermic male, respectively. All sperm cells from normozoospermic male showed a normal haploid 23-chromosome profile. For the RcT carrier, the sequencing data revealed that 64.5% of sperm cells harbored different variants of chromosome aberrations, involving deletion of 7p or 7q, duplication of 7p, and duplication of 13q, which is concordant with the expected chromosome segregation patterns observed in balanced translocation carriers. In one sample, a duplication of 9q was also detected.ConclusionsWe optimized FACS protocol for simple and efficient isolation of single human sperm cells that subsequently enabled a successful genome-wide chromosome profiling and identification of segmental aneuploidies from these individual cells, following NGS analysis. This approach may be useful for analyzing semen samples of infertile men or chromosomal aberration carriers to facilitate the reproductive risk assessment.
  • Vazquez-Garcia, Ignacio; Salinas, Francisco; Li, Jing; Fischer, Andrej; Barre, Benjamin; Hallin, Johan; Bergstrom, Anders; Alonso-Perez, Elisa; Warringer, Jonas; Mustonen, Ville; Liti, Gianni (2017)
    The joint contribution of pre-existing and de novo genetic variation to clonal adaptation is poorly understood but essential to designing successful antimicrobial or cancer therapies. To address this, we evolve genetically diverse populations of budding yeast, S. cerevisiae, consisting of diploid cells with unique haplotype combinations. We study the asexual evolution of these populations under selective inhibition with chemotherapeutic drugs by time-resolved whole-genome sequencing and phenotyping. All populations undergo clonal expansions driven by de novo mutations but remain genetically and phenotypically diverse. The clones exhibit widespread genomic instability, rendering recessive de novo mutations homozygous and refining pre-existing variation. Finally, we decompose the fitness contributions of pre-existing and de novo mutations by creating a large recombinant library of adaptive mutations in an ensemble of genetic backgrounds. Both pre-existing and de novo mutations substantially contribute to fitness, and the relative fitness of preexisting variants sets a selective threshold for new adaptive mutations.
  • Virtanen, Jenni; Smura, Teemu; Aaltonen, Kirsi; Moisander-Jylhä, Anna-Maria; Knuuttila, Anna; Vapalahti, Olli; Sironen, Tarja (2019)
    Aleutian mink disease virus (AMDV) is the causative agent of Aleutian disease (AD), which affects mink of all genotypes and also infects other mustelids such as ferrets, martens and badgers. Previous studies have investigated diversity in Finnish AMDV strains, but these studies have been restricted to small parts of the virus genome, and mostly from newly infected farms and free-ranging mustelids. Here, we investigated the diversity and evolution of Finnish AMDV strains by sequencing the complete coding sequences of 31 strains from mink originating from farms differing in their virus history, as well as from free-ranging mink. The data set was supplemented with partial genomes obtained from 26 strains. The sequences demonstrate that the Finnish AMDV strains have considerable diversity, and that the virus has been introduced to Finland in multiple events. Frequent recombination events were observed, as well as variation in the evolutionary rate in different parts of the genome and between different branches of the phylogenetic tree. Mink in the wild carry viruses with high intra-host diversity and are occasionally even co-infected by two different strains, suggesting that free-ranging mink tolerate chronic infections for extended periods of time. These findings highlight the need for further sampling to understand the mechanisms playing a role in the evolution and pathogenesis of AMDV.
  • Sheppard, Samuel K.; Cheng, Lu; Meric, Guillaume; De Haan, Caroline P. A.; Llarena, Ann-Katrin; Marttinen, Pekka; Vidal, Ana; Ridley, Anne; Clifton-Hadley, Felicity; Connor, Thomas R.; Strachan, Norval J. C.; Forbes, Ken; Colles, Frances M.; Jolley, Keith A.; Bentley, Stephen D.; Maiden, Martin C. J.; Hänninen, Marja-Liisa; Parkhill, Julian; Hanage, William P.; Corander, Jukka (2014)
  • BEEHIVE Collaboration; Wymant, Chris; Blanquart, Francois; Golubchik, Tanya; Gall, Astrid; Bakker, Margreet; Bezemer, Daniela; Croucher, Nicholas J.; Hall, Matthew; Hillebregt, Mariska; Ong, Swee Hoe; Ratmann, Oliver; Albert, Jan; Bannert, Norbert; Fellay, Jacques; Fransen, Katrien; Gourlay, Annabelle; Grabowski, M. Kate; Gunsenheimer-Bartmeyer, Barbara; Gunthard, Huldrych F.; Kivelä, Pia; Kouyos, Roger; Laeyendecker, Oliver; Liitsola, Kirsi; Meyer, Laurence; Porter, Kholoud; Ristola, Matti; van Sighem, Ard; Berkhout, Ben; Cornelissen, Marion; Kellam, Paul; Reiss, Peter; Fraser, Christophe (2018)
    Studying the evolution of viruses and their molecular epidemiology relies on accurate viral sequence data, so that small differences between similar viruses can be meaningfully interpreted. Despite its higher throughput and more detailed minority variant data, next-generation sequencing has yet to be widely adopted for HIV. The difficulty of accurately reconstructing the consensus sequence of a quasispecies from reads (short fragments of DNA) in the presence of large between-and within-host diversity, including frequent indels, may have presented a barrier. In particular, mapping (aligning) reads to a reference sequence leads to biased loss of information; this bias can distort epidemiological and evolutionary conclusions. De novo assembly avoids this bias by aligning the reads to themselves, producing a set of sequences called contigs. However contigs provide only a partial summary of the reads, misassembly may result in their having an incorrect structure, and no information is available at parts of the genome where contigs could not be assembled. To address these problems we developed the tool shiver to pre-process reads for quality and contamination, then map them to a reference tailored to the sample using corrected contigs supplemented with the user's choice of existing reference sequences. Run with two commands per sample, it can easily be used for large heterogeneous data sets. We used shiver to reconstruct the consensus sequence and minority variant information from paired-end short-read whole-genome data produced with the Illumina platform, for sixty-five existing publicly available samples and fifty new samples. We show the systematic superiority of mapping to shiver's constructed reference compared with mapping the same reads to the closest of 3,249 real references: median values of 13 bases called differently and more accurately, 0 bases called differently and less accurately, and 205 bases of missing sequence recovered. We also successfully applied shiver to whole-genome samples of Hepatitis C Virus and Respiratory Syncytial Virus. shiver is publicly available from https://github.com/ChrisHIV/shiver.
  • Lebreton, Francois; van Schaik, Willem; McGuire, Abigail Manson; Godfrey, Paul; Griggs, Allison; Mazumdar, Varun; Corander, Jukka; Cheng, Lu; Saif, Sakina; Young, Sarah; Zeng, Qiandong; Wortman, Jennifer; Birren, Bruce; Willems, Rob J. L.; Earl, Ashlee M.; Gilmore, Michael S. (2013)
  • Acquaviva, Laurent; Boekhout, Michiel; Karasu, Mehmet E.; Brick, Kevin; Pratto, Florencia; Li, Tao; van Overbeek, Megan; Kauppi, Liisa; Camerini-Otero, R. Daniel; Jasin, Maria; Keeney, Scott (2020)
    In mice, the pseudoautosomal region of the sex chromosomes undergoes a dynamic structural rearrangement to promote a high rate of DNA double-strand breaks and to ensure X-Y recombination. Sex chromosomes in males of most eutherian mammals share only a small homologous segment, the pseudoautosomal region (PAR), in which the formation of double-strand breaks (DSBs), pairing and crossing over must occur for correct meiotic segregation(1,2). How cells ensure that recombination occurs in the PAR is unknown. Here we present a dynamic ultrastructure of the PAR and identify controlling cis- and trans-acting factors that make the PAR the hottest segment for DSB formation in the male mouse genome. Before break formation, multiple DSB-promoting factors hyperaccumulate in the PAR, its chromosome axes elongate and the sister chromatids separate. These processes are linked to heterochromatic mo-2 minisatellite arrays, and require MEI4 and ANKRD31 proteins but not the axis components REC8 or HORMAD1. We propose that the repetitive DNA sequence of the PAR confers unique chromatin and higher-order structures that are crucial for recombination. Chromosome synapsis triggers collapse of the elongated PAR structure and, notably, oocytes can be reprogrammed to exhibit spermatocyte-like levels of DSBs in the PAR simply by delaying or preventing synapsis. Thus, the sexually dimorphic behaviour of the PAR is in part a result of kinetic differences between the sexes in a race between the maturation of the PAR structure, formation of DSBs and completion of pairing and synapsis. Our findings establish a mechanistic paradigm for the recombination of sex chromosomes during meiosis.
  • Shang, Yi; Yang, Fei; Schulman, Alan H.; Zhu, Jinghuan; Jia, Yong; Wang, Junmei; Zhang, Xiao-Qi; Jia, Qiaojun; Hua, Wei; Yang, Jianming; Li, Chengdao (2017)
    A poly-row branched spike (prbs) barley mutant was obtained from soaking a two-rowed barley inflorescence in a solution of maize genomic DNA. Positional cloning and sequencing demonstrated that the prbs mutant resulted from a 28 kb deletion including the inflorescence architecture gene HvRA2. Sequence annotation revealed that the HvRA2 gene is flanked by two LTR (long terminal repeat) retrotransposons (BARE) sharing 89% sequence identity. A recombination between the integrase (IN) gene regions of the two BARE copies resulted in the formation of an intact BARE and loss of HvRA2. No maize DNA was detected in the recombination region although the flanking sequences of HvRA2 gene showed over 73% of sequence identity with repetitive sequences on 10 maize chromosomes. It is still unknown whether the interaction of retrotransposons between barley and maize has resulted in the recombination observed in the present study.
  • Zou, Lan; Chen, Yuan Xue; Penttinen, Petri; Lan, Qin; Wang, Ke; Liu, Ming; Peng, Dan; Zhang, Xiaoping; Chen, Qiang; Zhao, Ke; Zeng, Xiangzhong; Xu, Kai Wei (2016)
    Thirty-one nodulating rhizobium strains were collected from root nodules of spring and winter type faba bean cultivars grown in micro ecoarea, i.e. the same field in Chengdu plain, China. The symbiotic efficiency and phylogeny of these strains were studied. Effectively nitrogen fixing strains were isolated from both winter type and spring type cultivars. Based on phylogenetic analysis of 16S rRNA gene and concatenated sequence of atpD, glnII and recA genes, the isolates were assigned as Rhizobium anhuiense and a potential new Rhizobium species. The isolates were diverse on symbiosis related gene level, carrying five, four and three variants of nifH, nodC and nodD, respectively. Strains carrying similar gene combinations were trapped by both winter and spring cultivars, disagreeing with the specificity of symbiotic genotypes to reported earlier faba bean ecotypes.
  • Shao, Changwei; Niu, Yongchao; Rastas, Pasi; Liu, Yang; Xie, Zhiyuan; Li, Hengde; Wang, Lei; Jiang, Yong; Tai, Shuaishuai; Tian, Yongsheng; Sakamoto, Takashi; Chen, Songlin (2015)
    High-resolution genetic maps are essential for fine mapping of complex traits, genome assembly, and comparative genomic analysis. Single-nucleotide polymorphisms (SNPs) are the primary molecular markers used for genetic map construction. In this study, we identified 13,362 SNPs evenly distributed across the Japanese flounder (Paralichthys olivaceus) genome. Of these SNPs, 12,712 high-confidence SNPs were subjected to high-throughput genotyping and assigned to 24 consensus linkage groups (LGs). The total length of the genetic linkage map was 3,497.29 cM with an average distance of 0.47 cM between loci, thereby representing the densest genetic map currently reported for Japanese flounder. Nine positive quantitative trait loci (QTLs) forming two main clusters for Vibrio anguillarum disease resistance were detected. All QTLs could explain 5.1-8.38% of the total phenotypic variation. Synteny analysis of the QTL regions on the genome assembly revealed 12 immune-related genes, among them 4 genes strongly associated with V. anguillarum disease resistance. In addition, 246 genome assembly scaffolds with an average size of 21.79 Mb were anchored onto the LGs; these scaffolds, comprising 522.99 Mb, represented 95.78% of assembled genomic sequences. The mapped assembly scaffolds in Japanese flounder were used for genome synteny analyses against zebrafish (Danio rerio) and medaka (Oryzias latipes). Flounder and medaka were found to possess almost one-to-one synteny, whereas flounder and zebrafish exhibited a multi-syntenic correspondence. The newly developed high-resolution genetic map, which will facilitate QTL mapping, scaffold assembly, and genome synteny analysis of Japanese flounder, marks a milestone in the ongoing genome project for this species.
  • Weinert, Lucy A.; Chaudhuri, Roy R.; Wang, Jinhong; Peters, Sarah E.; Corander, Jukka; Jombart, Thibaut; Baig, Abiyad; Howell, Kate J.; Vehkala, Minna; Valimaki, Niko; Harris, David; Tran Thi Bich Chieu,; Nguyen Van Vinh Chau,; Campbell, James; Schultsz, Constance; Parkhill, Julian; Bentley, Stephen D.; Langford, Paul R.; Rycroft, Andrew N.; Wren, Brendan W.; Farrar, Jeremy; Baker, Stephen; Ngo Thi Hoa,; Holden, Matthew T. G.; Tucker, Alexander W.; Maskell, Duncan J.; BRaDP1T Consortium (2015)
    Streptococcus suis causes disease in pigs worldwide and is increasingly implicated in zoonotic disease in East and South-East Asia. To understand the genetic basis of disease in S. suis, we study the genomes of 375 isolates with detailed clinical phenotypes from pigs and humans from the United Kingdom and Vietnam. Here, we show that isolates associated with disease contain substantially fewer genes than non-clinical isolates, but are more likely to encode virulence factors. Human disease isolates are limited to a single-virulent population, originating in the 1920 s when pig production was intensified, but no consistent genomic differences between pig and human isolates are observed. There is little geographical clustering of different S. suis subpopulations, and the bacterium undergoes high rates of recombination, implying that an increase in virulence anywhere in the world could have a global impact over a short timescale.
  • Koli, Katri; Sutinen, Eva; Ronty, Mikko; Rantakari, Pia; Fortino, Vittorio; Pulkkinen, Ville; Greco, Dario; Sipila, Petra; Myllarniemi, Marjukka (2016)
    Idiopathic pulmonary fibrosis (IPF) is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP) inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC) promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung.
  • Vaisanen, Elina; Fu, Yu; Hedman, Klaus; Soderlund-Venermo, Maria (2017)
    Next-generation sequencing and metagenomics have revolutionized the discovery of novel viruses. In recent years, three novel protoparvoviruses have been discovered in fecal samples of humans: bufavirus (BuV) in 2012, tusavirus (TuV) in 2014, and cutavirus (CuV) in 2016. BuV has since been studied the most, disclosing three genotypes that also represent serotypes. Besides one nasal sample, BuV DNA has been found exclusively in diarrheal feces, but not in non-diarrheal feces, suggesting a causal relationship. According to both geno- and seroprevalences, BuV appears to be the most common of the three novel protoparvoviruses, whereas TuV DNA has been found in only a single fecal sample, with antibody detection being equally rare. Moreover, the TuV sequence is closer to those of non-human protoparvoviruses, and so the evidence of TuV being a human virus is thus far insufficient. Interestingly, besides in feces, CuV has also been detected in skin biopsies of patients with cutaneous T-cell lymphoma and a patient with melanoma, while all other skin samples have tested PCR negative. Even if preliminary disease associations exist, the full etiological roles of these viruses in human disease are yet to be resolved.
  • Badawy, Shimaa; Pajunen, Maria I.; Haiko, Johanna; Baka, Zakaria A. M.; Abou-Dobara, Mohamed; El-Sayed, Ahmed K. A.; Skurnik, Mikael (2020)
    Acinetobacter baumanniiis an opportunistic pathogen that presents a serious clinical challenge due to its increasing resistance to all available antibiotics. Phage therapy has been introduced recently to treat antibiotic-incurableA. baumanniiinfections. In search for newA. baumanniispecific bacteriophages, 20 clinicalA. baumanniistrains were used in two pools in an attempt to enrich phages from sewage. The enrichment resulted in induction of resident prophage(s) and three temperate bacteriophages, named vB_AbaS_fEg-Aba01, vB_AbaS_fLi-Aba02 and vB_AbaS_fLi-Aba03, all able to infect only one strain (#6597) of the 20 clinical strains, were isolated. Morphological characteristics obtained by transmission electron microscopy together with the genomic information revealed that the phages belong to the familySiphoviridae. The ca. 35 kb genomic sequences of the phages were >99% identical to each other. The linear ds DNA genomes of the phages contained 10 nt cohesive end termini, 52-54 predicted genes, anattPsite and one tRNA gene each. A database search revealed an >99% identical prophage in the genome ofA. baumanniistrain AbPK1 (acc. no. CP024576.1). Over 99% identical prophages were also identified from two of the original 20 clinical strains (#5707 and #5920) and both were shown to be spontaneously inducible, thus very likely being the origins of the isolated phages. The phage vB_AbaS_fEg-Aba01 was also able to lysogenize the susceptible strain #6597 demonstrating that it was fully functional. The phages showed a very narrow host range infecting only twoA. baumanniistrains. In conclusion, we have isolated and characterized three novel temperateSiphoviridaephages that infectA.baumannii.
  • Kalendar, Ruslan; Raskina, Olga; Belyayev, Alexander; Schulman, Alan (2020)
    Retrotransposable elements are widely distributed and diverse in eukaryotes. Their copy number increases through reverse-transcription-mediated propagation, while they can be lost through recombinational processes, generating genomic rearrangements. We previously identified extensive, structurally uniform retrotransposon groups in which no member contains the gag, pol, or env internal domains. Because of the lack of protein-coding capacity, these groups are non-autonomous in replication, even if transcriptionally active. The Cassandra element belongs to the non-autonomous group called terminal-repeat retrotransposons in miniature (TRIM). It carries 5S RNA sequences with conserved RNA polymerase (pol) III promoters and terminators in its long terminal repeats (LTRs). Here, we identified multiple extended tandem arrays of Cassandra retrotransposons within different plant species, including ferns. At least 12 copies of repeated LTRs (as the tandem unit) and internal domain (as a spacer), giving a pattern that resembles the cellular 5S rRNA genes, were identified. Cytogenetic analysis revealed the specific chromosomal pattern of the Cassandra retrotransposon with prominent clustering at and around 5S rDNA loci. The secondary structure of the Cassandra retroelement RNA is predicted to form super-loops, in which the two LTRs are complementary to each other and can initiate local recombination, leading to the tandem arrays of Cassandra elements. The array structures are conserved for Cassandra retroelements of different species. We speculate that recombination events similar to those of 5S rRNA genes may explain the wide variation in Cassandra copy number. Likewise, the organization of 5S rRNA gene sequences is very variable in flowering plants; part of what is taken for 5S gene copy variation may be variation in Cassandra number. The role of the Cassandra 5S sequences remains to be established.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2019)
    Measurements of differential cross sections for inclusive very forward jet production in proton-lead collisions as a function of jet energy are presented. The data were collected with the CMS experiment at the LHC in the laboratory pseudorapidity range 6 : 6 < < 5 : 2. Asymmetric beam energies of 4TeV for protons and 1.58TeV per nucleon for Pb nuclei were used, corresponding to a center-of-mass energy per nucleon pair of p sNN = 5 : 02TeV. Collisions with either the proton (p+ Pb) or the ion (Pb+ p) traveling towards the negative hemisphere are studied. The jet cross sections are unfolded to stable-particle level cross sections with pT & 3 GeV, and compared to predictions from various Monte Carlo event generators. In addition, the cross section ratio of p+ Pb and Pb+ p data is presented. The results are discussed in terms of the saturation of gluon densities at low fractional parton momenta. None of the models under consideration describes all the data over the full jet-energy range and for all beam con fi gurations. Discrepancies between the di ff erential cross sections in data and model predictions of more than two orders of magnitude are observed.
  • Junninen, Heikki; Duplissy, Jonathan; Ehn, Mikael; Sipilä, Mikko; Kangasluoma, Juha; Franchin, Alessandro; Petäjä, Tuukka; Manninen, Hanna E.; Kerminen, Veli-Matti; Worsnop, Douglas; Kulmala, Markku (2016)
    Atmospheric ions are produced after a cascade of reactions starting from initial ionization by high energetic radiation. Such ionization bursts generate ions that rapidly react and generate a suite of ion products. Primary ions are in the atmosphere originate from radioactive decay, gamma radiation from the soil or cosmic ray events. In this work, we modified an existing instrumentation and developed a novel setup for detecting ion bursts. The setup consists of a continuous flow ionization chamber coupled to Atmospheric Pressure interface Time-Of-Flight (APi-TOF) mass spectrometer. The APi-TOF sampling rate was set to 100 Hz in order to detect individual ion bursts from ionization events. Besides counting the individual ionization events, the developed setup is able to follow the rapidly changing chemical composition of ions during ion burst cascade. The setup can give us insights into the primary ionization mechanisms and their importance in atmospheric ion and aerosol dynamics.