Browsing by Subject "RECRUITMENT"

Sort by: Order: Results:

Now showing items 1-20 of 24
  • Clement, Cristina C.; D'Alessandro, Angelo; Thangaswamy, Sangeetha; Chalmers, Samantha; Furtado, Raquel; Spada, Sheila; Mondanelli, Giada; Ianni, Federica; Gehrke, Sarah; Gargaro, Marco; Manni, Giorgia; Lopez Cara, Luisa Carlota; Runge, Peter; Tsai, Wanxia Li; Karaman, Sinem; Arasa, Jorge; Fernandez-Rodriguez, Ruben; Beck, Amanda; Macchiarulo, Antonio; Gadina, Massimo; Halin, Cornelia; Fallarino, Francesca; Skobe, Mihaela; Veldhoen, Marc; Moretti, Simone; Formenti, Silvia; Demaria, Sandra; Soni, Rajesh K.; Galarini, Roberta; Sardella, Roccaldo; Lauvau, Gregoire; Putterman, Chaim; Alitalo, Kari; Grohmann, Ursula; Santambrogio, Laura (2021)
    Tryptophan catabolism is a major metabolic pathway utilized by several professional and non-professional antigen presenting cells to maintain immunological tolerance. Here we report that 3-hydroxy-l-kynurenamine (3-HKA) is a biogenic amine produced via an alternative pathway of tryptophan metabolism. In vitro, 3-HKA has an anti-inflammatory profile by inhibiting the IFN-gamma mediated STAT1/NF-kappa Beta pathway in both mouse and human dendritic cells (DCs) with a consequent decrease in the release of pro-inflammatory chemokines and cytokines, most notably TNF, IL-6, and IL12p70. 3-HKA has protective effects in an experimental mouse model of psoriasis by decreasing skin thickness, erythema, scaling and fissuring, reducing TNF, IL-1 beta, IFN-gamma, and IL-17 production, and inhibiting generation of effector CD8(+) T cells. Similarly, in a mouse model of nephrotoxic nephritis, besides reducing inflammatory cytokines, 3-HKA improves proteinuria and serum urea nitrogen, overall ameliorating immune-mediated glomerulonephritis and renal dysfunction. Overall, we propose that this biogenic amine is a crucial component of tryptophan-mediated immune tolerance. 3-hydroxy-L-kynurenamine (3-HKA) is a metabolite deriving from a lateral pathway of tryptophan catabolism. Here the authors identify 3-HKA as a biogenic amine and show it has anti-inflammatory properties that can protect mice against psoriasis and nephrotoxic nephritis.
  • Holmgren, Noel Michael Andre; Norrstrom, Niclas; Aps, Robert; Kuikka, Sakari (2014)
  • Sahu, Biswajyoti; Pihlajamaa, Paivi; Dubois, Vanessa; Kerkhofs, Stefanie; Claessens, Frank; Jänne, Olli A. (2014)
  • Jiu, Yaming; Lehtimaki, Jaakko; Tojkander, Sari; Cheng, Fang; Jäälinoja, Harri; Liu, Xiaonan; Varjosalo, Markku; Eriksson, John E.; Lappalainen, Pekka (2015)
    The actin cytoskeleton and cytoplasmic intermediate filaments contribute to cell migration and morphogenesis, but the interplay between these two central cytoskeletal elements has remained elusive. Here, we find that specific actin stress fiber structures, transverse arcs, interact with vimentin intermediate filaments and promote their retrograde flow. Consequently, myosin-II-containing arcs are important for perinuclear localization of the vimentin network in cells. The vimentin network reciprocally restricts retrograde movement of arcs and hence controls the width of flat lamellum at the leading edge of the cell. Depletion of plectin recapitulates the vimentin organization phenotype of arc-deficient cells without affecting the integrity of vimentin filaments or stress fibers, demonstrating that this cytoskeletal crosslinker is required for productive interactions between vimentin and arcs. Collectively, our results reveal that plectin-mediated interplay between contractile actomyosin arcs and vimentin intermediate filaments controls the localization and dynamics of these two cytoskeletal systems and is consequently important for cell morphogenesis.
  • Karaman, Sinem; Hollmen, Maija; Robciuc, Marius R.; Alitalo, Annamari; Nurmi, Harri; Morf, Bettina; Buschle, Dorina; Alkan, H. Furkan; Ochsenbein, Alexandra M.; Alitalo, Kari; Wolfrum, Christian; Detmar, Michael (2015)
    Objective: Elevated serum levels of the lymphangiogenic factors VEGF-C and -D have been observed in obese individuals but their relevance for the metabolic syndrome has remained unknown. Methods: K14-VEGFR-3-Ig (sR3) mice that constitutively express soluble-VEGFR-3eIg in the skin, scavenging VEGF-C and -D, and wildtype (WT) mice were fed either chow or high-fat diet for 20 weeks. To assess the effect of VEGFR-3 blockage on adipose tissue growth and insulin sensitivity, we evaluated weight gain, adipocyte size and hepatic lipid accumulation. These results were complemented with insulin tolerance tests, FACS analysis of adipose tissue macrophages, in vitro 3T3-L1 differentiation assays and in vivo blocking antibody treatment experiments. Results: We show here that sR3 mice are protected from obesity-induced insulin resistance and hepatic lipid accumulation. This protection is associated with enhanced subcutaneous adipose tissue hyperplasia and an increased number of alternatively-activated (M2) macrophages in adipose tissue. We also show that VEGF-C and -D are chemotactic for murine macrophages and that this effect is mediated by VEGFR-3, which is upregulated on M1 polarized macrophages. Systemic antibody blockage of VEGFR-3 in db/db mice reduces adipose tissue macrophage infiltration and hepatic lipid accumulation, and improves insulin sensitivity. Conclusions: These results reveal an unanticipated role of the lymphangiogenic factors VEGF-C and -D in the mediation of metabolic syndrome-associated adipose tissue inflammation. Blockage of these lymphangiogenic factors might constitute a new therapeutic strategy for the prevention of obesity-associated insulin resistance. (C) 2014 The Authors. Published by Elsevier GmbH.
  • Lai, Tin-Yu; Salminen, Jani; Jäppinen, Jukka-Pekka; Koljonen, Saija; Mononen, Laura; Nieminen, Emmi; Vihervaara, Petteri; Oinonen, Soile (2018)
    In this paper, we examine how progress on ecosystem service indicators could contribute to ecosystem accounting within the scope of environmental-economic accounting in Finland. We propose an integration framework and examine the integration of ecosystem service indicators into environmental-economic accounting with two case studies relevant for Finland: (1) water-related ecosystem services and (2) the ecosystem services of fish provisioning in marine ecosystems. In light of these case studies, we evaluate the relevance of existing Finnish ecosystem service indicators, the data availability for ecosystem accounting in Finland, and the applicability of the System of Environmental-Economic Accounting o Experimental Ecosystem Accounting (SEEA-EEA) framework to integrate Finnish ecosystem service indicators and other relevant data into environmental-economic accounts. The results indicate that the present ecosystem service indicators can assist in creating a basis for ecosystem accounting, but the indicators require further elaboration to be more compatible with the existing environmental-economic accounting system.
  • Tanenbaum, Marvin E.; Vallenius, Tea Kaarina; Geers, Erica F.; Greene, Lois; Mäkelä, Tomi; Medema, Rene H. (2010)
  • Saulamo, Kari; Heikinheimo, Outi; Lappalainen, Jyrki (2020)
    In the Archipelago Sea, pikeperch (Sander lucioperca) is an important species in both commercial and recreational fisheries. Pikeperch is caught mainly with small mesh size gillnets, and annual fishing mortality is high. The possible effects of such fisheries, as well as temperature or density on pikeperch growth have not been studied earlier. The first hypothesis of this study was that the effect of temperature on growth is positive and that of density is negative. The second hypothesis was that size selectivity of gillnets causes the fast-growing individuals to be caught at younger ages than the slow growing ones. The results showed that temperature had a significant positive effect on growth, and this was greater than the negative effect of year-class density, which was also significant. The gillnet selectivity caused a difference of up to 60mm in back-calculated lengths in the fully recruited age groups within the same year class, between pikeperch caught at age 6+ and age 9+. Thus, the Rosa Lee phenomenon caused by gillnet size-selectivity led to the removal of faster growing specimens from the population at younger ages. This can potentially cause underestimation of real growth, and thus, poor fishery management.
  • Marsman, Floor; Nystuen, Kristin O.; Opedal, Oystein H.; Foest, Jessie J.; Sorensen, Mia Vedel; De Frenne, Pieter; Graae, Bente Jessen; Limpens, Juul (2021)
    Questions Changes in climate and herbivory pressure affect northern alpine ecosystems through woody plant encroachment, altering their composition, structure and functioning. The encroachment often occurs at unequal rates across heterogeneous landscapes, hinting at the importance of habitat-specific drivers that either hamper or facilitate woody plant establishment. Here, we assess: (1) the invasibility of three distinct alpine plant community types (heath, meadow andSalixshrubland) byPinus sylvestris(Scots pine); and (2) the relative importance of biotic (above-ground interactions with current vegetation, herbivory and shrub encroachment) and microclimate-related abiotic (soil temperature, moisture and light availability) drivers of pine seedling establishment success. Location Dovrefjell, Central Norway. Methods We conducted a pine seed sowing experiment, testing how factorial combinations of above-ground removal of co-occurring vegetation, herbivore exclusion and willow transplantation (simulated shrub encroachment) affect pine emergence, survival and performance (new stem growth, stem height and fraction of healthy needles) in three plant communities, characteristic of alpine tundra, over a period of five years. Results Pine seedling emergence and survival were similar across plant community types. Herbivore exclusion and vegetation removal generally increased pine seedling establishment and seedling performance. Within our study, microclimate had minimal effects on pine seedling establishment and performance. These results illustrate the importance of biotic resistance to seedling establishment. Conclusion Pine seedlings can easily establish in alpine tundra, and biotic factors (above-ground plant interactions and herbivory) are more important drivers of pine establishment in alpine tundra than abiotic, microclimate-related, factors. Studies aiming to predict future vegetation changes should thus consider local-scale biotic interactions in addition to abiotic factors.
  • Teixidó, Joaquin; Hidalgo, Andres; Fagerholm, Susanna (2019)
  • van Uitert, Miranda; Moerland, Perry D.; Enquobahrie, Daniel A.; Laivuori, Hannele; van der Post, Joris A. M.; Ris-Stalpers, Carrie; Afink, Gijs B. (2015)
    Studies using the placental transcriptome to identify key molecules relevant for preeclampsia are hampered by a relatively small sample size. In addition, they use a variety of bioinformatics and statistical methods, making comparison of findings challenging. To generate a more robust preeclampsia gene expression signature, we performed a meta-analysis on the original data of 11 placenta RNA microarray experiments, representing 139 normotensive and 116 preeclamptic pregnancies. Microarray data were pre-processed and analyzed using standardized bioinformatics and statistical procedures and the effect sizes were combined using an inverse-variance random-effects model. Interactions between genes in the resulting gene expression signature were identified by pathway analysis (Ingenuity Pathway Analysis, Gene Set Enrichment Analysis, Graphite) and protein-protein associations (STRING). This approach has resulted in a comprehensive list of differentially expressed genes that led to a 388-gene meta-signature of preeclamptic placenta. Pathway analysis highlights the involvement of the previously identified hypoxia/HIF1A pathway in the establishment of the preeclamptic gene expression profile, while analysis of protein interaction networks indicates CREBBP/EP300 as a novel element central to the preeclamptic placental transcriptome. In addition, there is an apparent high incidence of preeclampsia in women carrying a child with a mutation in CREBBP/EP300 (Rubinstein-Taybi Syndrome). The 388-gene preeclampsia meta-signature offers a vital starting point for further studies into the relevance of these genes (in particular CREBBP/EP300) and their concomitant pathways as biomarkers or functional molecules in preeclampsia. This will result in a better understanding of the molecular basis of this disease and opens up the opportunity to develop rational therapies targeting the placental dysfunction causal to preeclampsia.
  • Soininen, Paivi; Putkonen, Hanna; Joffe, Grigori; Korkeila, Jyrki; Valimaki, Maritta (2014)
  • Eguiluz-Gracia, Ibon; Malmström, Kristiina; Dheyauldeen, Sinan Ahmed; Lohi, Jouko; Sajantila, Antti; Aalokken, Ragnhild; Sundaram, Arvind Y. M.; Gilfillan, Gregor D.; Makela, Mika; Baekkevold, Espen S.; Jahnsen, Frode L. (2018)
    Background: Activated T helper type 2 (Th2) cells are believed to play a pivotal role in allergic airway inflammation, but which cells attract and activate Th2 cells locally have not been fully determined. Recently, it was shown in an experimental human model of allergic rhinitis (AR) that activated monocytes rapidly accumulate in the nasal mucosa after local allergen challenge, where they promote recruitment of Th2 cells and eosinophils. Objective: To investigate whether monocytes are recruited to the lungs in paediatric asthma. Methods: Tissue samples obtained from children and adolescents with fatal asthma attack (n = 12), age-matched non-atopic controls (n = 9) and allergen-challenged AR patients (n = 8) were subjected to in situ immunostaining. Results: Monocytes, identified as CD68+S100A8/A9+ cells, were significantly increased in the lower airway mucosa and in the alveoli of fatal asthma patients compared with control individuals. Interestingly, cellular aggregates containing CD68+S100A8/A9+ monocytes obstructing the lumen of bronchioles were found in asthmatics (8 out of 12) but not in controls. Analysing tissue specimens from challenged AR patients, we confirmed that co-staining with CD68 and S100A8/A9 was a valid method to identify recently recruited monocytes. We also showed that the vast majority of accumulating monocytes both in the lungs and in the nasal mucosa expressed matrix metalloproteinase 10, suggesting that this protein may be involved in their migration within the tissue. Conclusions and clinical relevance: Monocytes accumulated in the lungs of children and adolescents with fatal asthma attack. This finding strongly suggests that monocytes are directly involved in the immunopathology of asthma and that these pro-inflammatory cells are potential targets for therapy.
  • Liu, Zehua; Li, Yunzhan; Li, Wei; Xiao, Chen; Liu, Dongfei; Dong, Chao; Zhang, Ming; Mäkilä, Ermei; Kemell, Marianna; Salonen, Jarno; Hirvonen, Jouni T.; Zhang, Hongbo; Zhou, Dawang; Deng, Xianming; Santos, Helder A. (2018)
    Herein, a novel nanohybrid based on porous silicon, gold nanoparticles (Au NPs), and acetalated dextran (DPSi/DAu@AcDEX) is reported to encapsulate and deliver one drug and increase the computer tomography (CT) signal for acute-liver-failure (ALF) theranostics. A microfluidic-assisted method is used to co-encapsulate different NPs in a single step. By alternating the surface properties of different NPs and by modulating the composition of the organic phase, both PSi and Au NPs are effectively encapsulated into the polymer matrix simultaneously, thus further achieving a multifunctional application. This system can be used to identify pathologically changes in the tissues and selectively deliver drugs to these sites. The loading of a therapeutic compound (XMU-MP-1) improves the drug solubility, precise, in situ drug delivery, and the drug-functioning time. In vivo results confirm a superior treatment effect and better compliance of this newly developed nanoformulation than free compound. This nanosystem plays a crucial role in targeting the lesion area, thus increasing the local drug concentration important for ALF reverse-effect. Moreover, the residence of Au NPs within the matrix further endows our system for CT-imaging. Altogether, these results support that this nanohybrid is a potential theranostic platform for ALF.
  • Khatun, Masuma; Sorjamaa, Anna; Kangasniemi, Marika; Sutinen, Meeri; Saio, Tuuia; Liakka, Annikki; Lehenkari, Petri; Tapanainen, Juha S.; Vuolteenaho, Olli; Chen, Joseph C.; Lehtonen, Siri; Piltonen, Terhi T. (2017)
    Objective Intrinsic inflammatory characteristics play a pivotal role in stem cell recruitment and homing through migration where the subsequent change in niche has been shown to alter these characteristics. The bone marrow mesenchymal stem cells (bmMSCs) have been demonstrated to migrate to the endometrium contributing to the stem cell reservoir and regeneration of endometrial tissue. Thus, the aim of the present study was to compare the inflammation-driven migration and cytokine secretion profile of human bmMSCs to endometrial mesenchymal stem cells (eMSCs) and endometrial fibroblasts (eSFs). Materials and methods The bmMSCs were isolated from bone marrow aspirates through culturing, whereas eMSCs and eSFs were FACS-isolated. All cell types were tested for their surface marker, proliferation profiles and migration properties towards serum and inflammatory attractants. The cytokine/chemokine secretion profile of 35 targets was analysed in each cell type at basal level along with lipopolysaccharide (LPS)-induced state. Results Both stem cell types, bmMSCs and eMSCs, presented with similar stem cell surface marker profiles as well as possessed high proliferation and migration potential compared to eSFs. In multiplex assays, the secretion of 16 cytokine targets was detected and LPS stimulation expanded the cytokine secretion pattern by triggering the secretion of several targets. The bmMSCs exhibited higher cytokine secretion of vascular endothelial growth factor (VEGF)A, stromal cell-derived factor-1 alpha (SDF)-1 alpha, interleukin-1 receptor antagonist (IL-1RA), IL-6, interferon-gamma inducible protein (IP)-10, monocyte chemoattractant protein (MCP)1, macrophage inflammatory protein (MIP) 1 alpha and RANTES compared to eMSCs and/or eSFs after stimulation with LPS. The basal IL-8 secretion was higher in both endometrial cell types compared to bmMSCs. Conclusion Our results highlight that similar to bmMSCs, the eMSCs possess high migration activity while the differentiation process towards stromal fibroblasts seemed to result in loss of stem cell surface markers, minimal migration activity and a subtler cytokine profile likely contributing to normal endometrial function
  • Lopes, Alessandra; Feola, Sara; Ligot, Sophie; Fusciello, Manlio; Vandermeulen, Gaëlle; Préat, Véronique; Cerullo, Vincenzo (2019)
    Background: DNA vaccines against cancer held great promises due to the generation of a specific and long lasting immune response. However, when used as a single therapy, they are not able to drive the generated immune response into the tumor, because of the immunosuppressive microenvironment, thus limiting their use in humans. To enhance DNA vaccine efficacy, we combined a new poly-epitope DNA vaccine encoding melanoma tumor associated antigens and B16F1-specific neoantigens with an oncolytic virus administered intratumorally. Methods: Genomic analysis were performed to find specific mutations in B16F1 melanoma cells. The antigen gene sequences were designed according to these mutations prior to the insertion in the plasmid vector. Mice were injected with B16F1 tumor cells (n = 7-9) and therapeutically vaccinated 2, 9 and 16 days after the tumor injection. The virus was administered intratumorally at day 10, 12 and 14. Immune cell infiltration analysis and cytokine production were performed by flow cytometry, PCR and ELISPOT in the tumor site and in the spleen of animals, 17 days after the tumor injection. Results: The combination of DNA vaccine and oncolytic virus significantly increased the immune activity into the tumor. In particular, the local intratumoral viral therapy increased the NK infiltration, thus increasing the production of different cytokines, chemokines and enzymes involved in the adaptive immune system recruitment and cytotoxic activity. On the other side, the DNA vaccine generated antigen-specific T cells in the spleen, which migrated into the tumor when recalled by the local viral therapy. The complementarity between these strategies explains the dramatic tumor regression observed only in the combination group compared to all the other control groups. Conclusions: This study explores the immunological mechanism of the combination between an oncolytic adenovirus and a DNA vaccine against melanoma. It demonstrates that the use of a rational combination therapy involving DNA vaccination could overcome its poor immunogenicity. In this way, it will be possible to exploit the great potential of DNA vaccination, thus allowing a larger use in the clinic.
  • Westerbom, Mats; Mustonen, Olli; Jaatinen, Kim; Kilpi, Mikael; Norkko, Alf (2019)
    Examining changes in abundance and demographic rates at species distribution margins may provide the first signs of broader species responses to environmental change. Still, the joint impact of space and time have remained relatively unstudied in most marginal regions. In order to examine the influence of climate variability on mussel distribution patterns, we monitored three sublittoral and marginal blue mussel (Mytilus trossulus) populations, spaced along a salinity gradient. Densities and biomasses peaked toward the saltier parts of the study area and showed relatively larger variations toward the low saline edge. Temporally, the areas showed a consistent increase in abundance after a synchronized large-scale recruitment event, which was followed by a decline in population size, occurring much faster toward the very range edge. Salinity, temperature, winter severity, and wave exposure explained most of the spatiotemporal variation in mussel abundances and adults showed positive effects on recruit abundance. We show empirically that the dynamics of edge populations are not driven by large changes in climate variables but that small spatial and temporal changes in key environmental variables have large and non-linear population level effects. Our results also show that fluctuating recruitment is a key factor for population stability affecting the storage potential of marginal populations, which dramatically decrease toward the edge. Our study provides a window into future population patterns and processes that drive marginal mussel populations in an altered sea characterized by rising temperature and declining salinity.
  • Scaramuzzo, Gaetano; Broche, Ludovic; Pellegrini, Mariangela; Porra, Liisa; Derosa, Savino; Tannoia, Angela Principia; Marzullo, Andrea; Borges, Joao Batista; Bayat, Sam; Bravin, Alberto; Larsson, Anders; Perchiazzi, Gaetano (2019)
    Introduction: The mechanisms of lung inflation and deflation are only partially known. Ventilatory strategies to support lung function rely upon the idea that lung alveoli are isotropic balloons that progressively inflate or deflate and that lung pressure/volume curves derive only by the interplay of critical opening pressures, critical closing pressures, lung history, and position of alveoli inside the lung. This notion has been recently challenged by subpleural microscopy, magnetic resonance, and computed tomography (CT). Phase-contrast synchrotron radiation CT (PC-SRCT) can yield in vivo images at resolutions higher than conventional CT. Objectives: We aimed to assess the numerosity (ASden) and the extension of the surface of airspaces (ASext) in healthy conditions at different volumes, during stepwise lung deflation, in concentric regions of the lung. Methods: The study was conducted in seven anesthetized New Zealand rabbits. They underwent PC-SRCT scans (resolution of 47.7 mu m) of the lung at five decreasing positive end expiratory pressure (PEEP) levels of 12, 9, 6, 3, and 0 cmH(2)O during end-expiratory holds. Three concentric regions of interest (ROIs) of the lung were studied: subpleural, mantellar, and core. The images were enhanced by phase contrast algorithms. ASden and ASext were computed by using the Image Processing Toolbox for MatLab. Statistical tests were used to assess any significant difference determined by PEEP or ROI on ASden and ASext. Results: When reducing PEEP, in each ROI the ASden significantly decreased. Conversely, ASext variation was not significant except for the core ROI. In the latter, the angular coefficient of the regression line was significantly low. Conclusion: The main mechanism behind the decrease in lung volume at PEEP reduction is derecruitment. In our study involving lung regions laying on isogravitational planes and thus equally influenced by gravitational forces, airspace numerosity and extension of surface depend on the local mechanical properties of the lung.
  • Pfisterer, Simon; Gateva, Gergana; Horvath, Peter; Pirhonen, Juho; Salo, Veijo T.; Karhinen, Leena; Varjosalo, Markku; Ryhänen, Samppa J.; Lappalainen, Pekka; Ikonen, Elina (2017)
    Lipid droplets (LDs) are cellular organelles specialized in triacylglycerol (TG) storage undergoing homotypic clustering and fusion. In non-adipocytic cells with numerous LDs this is balanced by poorly understood droplet dissociation mechanisms. We identify non-muscle myosin IIa (NMIIa/MYH-9) and formin-like 1 (FMNL1) in the LD proteome. NMIIa and actin filaments concentrate around LDs, and form transient foci between dissociating LDs. NMIIa depletion results in decreased LD dissociations, enlarged LDs, decreased hydrolysis and increased storage of TGs. FMNL1 is required for actin assembly on LDs in vitro and for NMIIa recruitment to LDs in cells. We propose a novel acto-myosin structure regulating lipid storage: FMNL1-dependent assembly of myosin II-functionalized actin filaments on LDs facilitates their dissociation, thereby affecting LD surface-to-volume ratio and enzyme accessibility to TGs. In neutrophilic leucocytes from MYH9-related disease patients NMIIa inclusions are accompanied by increased lipid storage in droplets, suggesting that NMIIa dysfunction may contribute to lipid imbalance in man.