Browsing by Subject "RED"

Sort by: Order: Results:

Now showing items 1-8 of 8
  • Wang, Fang; Robson, T Matthew; Casal, Jorge J; Aphalo, Pedro J. (2020)
    The UV-A/blue photoreceptors phototropins and cryptochromes are both known to contribute to stomatal opening (∆gs) in blue light. However, their relative contributions to maintenance of gs in blue light through the whole photoperiod remains unknown. To elucidate this question, Arabidopsis phot1 phot2 and cry1 cry2 mutants (MTs) and their respective wild types (WTs) were irradiated with 200 μmol m-2 s-1 of blue-, green- or red-light (BL, GL or RL) throughout a 11-hour photoperiod. Stomatal conductance (gs) was higher under BL, than under RL or GL. Under RL, gs was not affected by either of the photoreceptor mutations, but under GL gs was slightly lower in cry1 cry2 than its WT. Under BL, the presence of phototropins was essential for rapid stomatal opening at the beginning of the photoperiod, while maximal stomatal opening beyond 3 h of irradiation required both phototropins and cryptochromes. Time courses of whole-plant net carbon assimilation rate (Anet) and the effective quantum yield of photosystem II photochemistry (ΦPSII) were consistent with an Anet-independent contribution of BL on gs both in phot1 phot2 and cry1 cry2 mutants. The changing roles of phototropins and cryptochromes through the day may allow more flexible coordination between gs and Anet.
  • Kluger, Nicolas (2016)
    Tattooing can result in a wide variety of complications, whose prevalence and incidence remain still unclear. Hypersensitivity reactions (or allergies) to tattoo pigments are currently the most common complication on a tattoo, however they are not predictable. Infections are nowadays directly related to the lack of asepsis and hygiene during the tattooing procedure or during the healing phase. Patients with a known cutaneous disease should be warned of a potential risk of localization of their disease to the tattoo. A skin eruption restricted to a tattoo may reveal sarcoidosis. Patients with chronic conditions and/or impaired immunity should discuss with their physician about the possibility and when to have a tattoo.
  • Telford, William G.; Shcherbakova, Daria M.; Buschke, David; Hawley, Teresa S.; Verkhusha, Vladislav V. (2015)
    Engineering of fluorescent proteins (FPs) has followed a trend of achieving longer fluorescence wavelengths, with the ultimate goal of producing proteins with both excitation and emission in the near-infrared (NIR) region of the spectrum. Flow cytometers are now almost universally equipped with red lasers, and can now be equipped with NIR lasers as well. Most red-shifted FPs of the GFP-like family are maximally excited by orange lasers (590 to 610 nm) not commonly found on cytometers. This has changed with the development of the iRFP series of NIR FPs from the protein family of bacterial phytochromes. The shortest wavelength variants of this series, iRFP670 and iRFP682 showed maximal excitation with visible red lasers. The longer wavelength variants iRFP702, iRFP713 and iRFP720 could be optimally excited by NIR lasers ranging from 685 to 730 nm. Pairs of iRFPs could be detected simultaneously by using red and NIR lasers. Moreover, a novel spectral cytometry technique, which relies on spectral deconvolution rather than optical filters, allowed spectra of all five iRFPs to be analyzed simultaneously with no spectral overlap. Together, the combination of iRFPs with the advanced flow cytometry will allow to first image tissues expressing iRFPs deep in live animals and then quantify individual cell intensities and sort out the distinct primary cell subpopulations ex vivo.
  • Shcherbakova, Daria M.; Stepanenko, Olesya V.; Turoverov, Konstantin K.; Verkhusha, Vladislav V. (2018)
    Since mammalian tissue is relatively transparent to near-infrared (NIR) light, NIR fluorescentproteins(FPs) engineeredfrombacterialphytochromeshave become widely used probes for non-invasive in vivo imaging. Recently, these genetically encoded NIR probes have been substantially improved, enabling imaging experiments that were not possible previously. Here, we discuss the use of monomeric NIR FPs and NIR biosensors for multiplexed imaging with common visible GFP-based probes and blue light-activatable optogenetic tools. These NIR probes are suitable for visualization of functional activities from molecular to organismal levels. In combination with advanced imaging techniques, such as two-photon microscopy with adaptive optics, photoacoustic tomography and its recent modification reversibly switchable photoacoustic computed tomography, NIR probes allow subcellular resolution at millimeter depths.
  • Atherton, Jon; Liu, Weiwei; Porcar-Castell, Albert (2019)
    Solar-induced chlorophyll a Fluorescence (SIF), which is distributed over a relatively broad (similar to 200 nm) spectral range, is a signal intricately connected to the efficiency of photosynthesis and is now observable from space. Variants of the Fraunhofer Line Depth/Discriminator (FLD) method are used as the basis of retrieval algorithms for estimating SIF from space. Although typically unobserved directly, recent advances in FLD-based algorithms now facilitate the prediction (by model inversion) of the canopy emitted fluorescence spectrum from the discrete-feature FLD retrievals. Here we present first canopy scale measurements of chlorophyll a fluorescence spectra emitted from Scots pine at two times of year, and also from a lingonberry dominated understory. We used a high power mul-tispectral Light Emitting Diode (LED) array to illuminate the respective canopies at night and measured under standardised conditions using a field spectrometer mounted in the nadir position above the canopy. We refer to the technique, which facilitates the in situ upscaling of a commonly measured leaf scale quantity to the canopy, as nocturnal LED-Induced chlorophyll a Fluorescence (LEDIF). The shape of the LEDIF spectra was dependant on the colour of the excitation light and also on the dominant species. Because we measured pine at two different times of year we were also able to show an increase in the canopy scale apparent quantum yield of fluorescence which was consistent with leaf-level increase in fluorescence yield recorded with a monitoring PAM fluorometer. The automation of the LEDIF technique could be used to estimate seasonal changes in canopy fluorescence spectra and yield from fixed or mobile platforms and provide a window into functional traits across species and architectures. LEDIF could also be used to evaluate FLD and inversion-based retrievals of canopy spectra, as well as different irradiance normalisation schemes typically applied to SIF data to account for the dependence of SIF on ambient light conditions.
  • Jokinen, Kari; Salovaara, Anna-Kaisa Johanna; Wasonga, Daniel; Edelmann, Minnamari; Simpura, Ilkka; Mäkelä, Pirjo (2022)
    Leafy vegetables like lettuce (Lactuca sativa L.) naturally have high nitrate content and the European Commission has set maximum level for nitrate in lettuce. Glycinebetaine is an organic osmolyte alleviating plant stress, but its role in leaf nitrate accumulation remains unknown. The uptake of glycinebetaine by lettuce roots, and its potential to regulate lettuce nitrate content and improve plant quality were investigated. Two hydroponic lettuce experiments were conducted with different glycinebetaine application rates (Exp1 : 0, 1, 7.5, and 15 mM; Exp2: 0, 1 + 1 + 1, 1 + 10, and 4 mM). Plants were analyzed at varying time points. Root application resulted in glycinebetaine uptake and translocation to the leaves. Glycinebetaine concentrations > 7.5 mM reduced leaf nitrate up to 40% and increased leaf dry matter content. Glycinebetaine showed a positive effect on leaf mineral and amino acid composition. Thus, glycinebetaine could be a novel strategy to reduce the nitrate content in hydroponic lettuce.
  • Liu, Jinxiu; Maeda, Eduardo; Du, Wang; Heiskanen, Janne (2021)
    Accurate and efficient burned area mapping and monitoring are fundamental for environmental applications. Studies using Landsat time series for burned area mapping are increasing and popular. However, the performance of burned area mapping with different spectral indices and Landsat time series has not been evaluated and compared. This study compares eleven spectral indices for burned area detection in the savanna area of southern Burkina Faso using Landsat data ranging from October 2000 to April 2016. The same reference data are adopted to assess the performance of different spectral indices. The results indicate that Burned Area Index (BAI) is the most accurate index in burned area detection using our method based on harmonic model fitting and breakpoint identification. Among those tested, fire-related indices are more accurate than vegetation indices, and Char Soil Index (CSI) performed worst. Furthermore, we evaluate whether combining several different spectral indices can improve the accuracy of burned area detection. According to the results, only minor improvements in accuracy can be attained in the studied environment, and the performance depended on the number of selected spectral indices.
  • Jonauskaite, Domicele; Abu-Akel, Ahmad; Dael, Nele; Oberfeld, Daniel; Abdel-Khalek, Ahmed M.; Al-Rasheed, Abdulrahman S.; Antonietti, Jean-Philippe; Bogushevskaya, Victoria; Chamseddine, Amer; Chkonia, Eka; Corona, Violeta; Fonseca-Pedrero, Eduardo; Griber, Yulia A.; Grimshaw, Gina; Hasan, Aya Ahmed; Havelka, Jelena; Hirnstein, Marco; Karlsson, Bodil S. A.; Laurent, Eric; Lindeman, Marjaana; Marquardt, Lynn; Mefoh, Philip; Papadatou-Pastou, Marietta; Perez-Albeniz, Alicia; Pouyan, Niloufar; Roinishvili, Maya; Romanyuk, Lyudmyla; Salgado Montejo, Alejandro; Schrag, Yann; Sultanova, Aygun; Uuskuela, Mari; Vainio, Suvi; Wasowicz, Grazyna; Zdravkovic, Suncica; Zhang, Meng; Mohr, Christine (2020)
    Many of us "see red," "feel blue," or "turn green with envy." Are such color-emotion associations fundamental to our shared cognitive architecture, or are they cultural creations learned through our languages and traditions? To answer these questions, we tested emotional associations of colors in 4,598 participants from 30 nations speaking 22 native languages. Participants associated 20 emotion concepts with 12 color terms. Pattern-similarity analyses revealed universal color-emotion associations (average similarity coefficientr= .88). However, local differences were also apparent. A machine-learning algorithm revealed that nation predicted color-emotion associations above and beyond those observed universally. Similarity was greater when nations were linguistically or geographically close. This study highlights robust universal color-emotion associations, further modulated by linguistic and geographic factors. These results pose further theoretical and empirical questions about the affective properties of color and may inform practice in applied domains, such as well-being and design.