Browsing by Subject "REDSHIFT SURVEY"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Allevato, V.; Viitanen, A.; Finoguenov, A.; Civano, F.; Suh, H.; Shankar, F.; Bongiorno, A.; Ferrara, A.; Gilli, R.; Miyaji, T.; Marchesi, S.; Cappelluti, N.; Salvato, M. (2019)
    Aims. We perform clustering measurements of 800 X-ray selected Chandra COSMOS Legacy (CCL) Type 2 active galactic nuclei (AGN) with known spectroscopic redshift to probe the halo mass dependence on AGN host galaxy properties, such as galaxy stellar mass M-star, star formation rate (SFR), and specific black hole accretion rate (BHAR; lambda(BHAR)) in the redshift range z;=;[0-3]. Methods. We split the sample of AGN with known spectroscopic redshits according to M-star, SFR and lambda(BHAR), while matching the distributions in terms of the other parameters, including redshift. We measured the projected two-point correlation function w(p)(r(p)) and modeled the clustering signal, for the different subsamples, with the two-halo term to derive the large-scale bias b and corresponding typical mass of the hosting halo. Results. We find no significant dependence of the large-scale bias and typical halo mass on galaxy stellar mass and specific BHAR for CCL Type 2 AGN at mean z;similar to;1, while a negative dependence on SFR is observed, i.e. lower SFR AGN reside in richer environment. Mock catalogs of AGN, matched to have the same X-ray luminosity, stellar mass, lambda(BHAR), and SFR of CCL Type 2 AGN, almost reproduce the observed M-star - M-h, lambda(BHAR) - M-h and SFR-M-h relations, when assuming a fraction of satellite AGN f(AGN)(sat) similar to 0.15fAGNsat similar to 0.15$ f_{\mathrm{AGN}}{\mathrm{sat}} \sim 0.15 $. This corresponds to a ratio of the probabilities of satellite to central AGN of being active Q;similar to;2. Mock matched normal galaxies follow a slightly steeper M-star - M-h relation, in which low mass mock galaxies reside in less massive halos than mock AGN of similar mass. Moreover, matched mock normal galaxies are less biased than mock AGN with similar specific BHAR and SFR, at least for Q > 1.
  • Euclid Collaboration; Pocino, A.; Tutusaus, I.; Gozaliasl, G.; Keihänen, E.; Kirkpatrick , C. C.; Kurki-Suonio, H.; Väliviita, J. (2021)
    Photometric redshifts (photo-zs) are one of the main ingredients in the analysis of cosmological probes. Their accuracy particularly affects the results of the analyses of galaxy clustering with photometrically selected galaxies (GC(ph)) and weak lensing. In the next decade, space missions such as Euclid will collect precise and accurate photometric measurements for millions of galaxies. These data should be complemented with upcoming ground-based observations to derive precise and accurate photo-zs. In this article we explore how the tomographic redshift binning and depth of ground-based observations will affect the cosmological constraints expected from the Euclid mission. We focus on GC(ph) and extend the study to include galaxy-galaxy lensing (GGL). We add a layer of complexity to the analysis by simulating several realistic photo-z distributions based on the Euclid Consortium Flagship simulation and using a machine learning photo-z algorithm. We then use the Fisher matrix formalism together with these galaxy samples to study the cosmological constraining power as a function of redshift binning, survey depth, and photo-z accuracy. We find that bins with an equal width in redshift provide a higher figure of merit (FoM) than equipopulated bins and that increasing the number of redshift bins from ten to 13 improves the FoM by 35% and 15% for GC(ph) and its combination with GGL, respectively. For GC(ph), an increase in the survey depth provides a higher FoM. However, when we include faint galaxies beyond the limit of the spectroscopic training data, the resulting FoM decreases because of the spurious photo-zs. When combining GC(ph) and GGL, the number density of the sample, which is set by the survey depth, is the main factor driving the variations in the FoM. Adding galaxies at faint magnitudes and high redshift increases the FoM, even when they are beyond the spectroscopic limit, since the number density increase compensates for the photo-z degradation in this case. We conclude that there is more information that can be extracted beyond the nominal ten tomographic redshift bins of Euclid and that we should be cautious when adding faint galaxies into our sample since they can degrade the cosmological constraints.
  • Balogh, Michael L.; Mcgee, Sean L.; Mok, Angus; Muzzin, Adam; van der Burg, Remco F. J.; Bower, Richard G.; Finoguenov, Alexis; Hoekstra, Henk; Lidman, Chris; Mulchaey, John S.; Noble, Allison; Parker, Laura C.; Tanaka, Masayuki; Wilman, David J.; Webb, Tracy; Wilson, Gillian; Yee, Howard K. C. (2016)
    We present an analysis of galaxies in groups and clusters at 0.8 <z <1.2, from the GCLASS and GEEC2 spectroscopic surveys. We compute a 'conversion fraction' f(convert) that represents the fraction of galaxies that were prematurely quenched by their environment. For massive galaxies, M-star > 10(10.3) M-circle dot, we find f(convert) similar to 0.4 in the groups and similar to 0.6 in the clusters, similar to comparable measurements at z = 0. This means the time between first accretion into a more massive halo and final star formation quenching is t(p) similar to 2 Gyr. This is substantially longer than the estimated time required for a galaxy's star formation rate to become zero once it starts to decline, suggesting there is a long delay time during which little differential evolution occurs. In contrast with local observations we find evidence that this delay time-scale may depend on stellarmass, with t(p) approaching t(Hubble) for M-star similar to 10(9.5) M-circle dot. The result suggests that the delay time must not only be much shorter than it is today, but may also depend on stellar mass in a way that is not consistent with a simple evolution in proportion to the dynamical time. Instead, we find the data are well-matched by a model in which the decline in star formation is due to 'overconsumption', the exhaustion of a gas reservoir through star formation and expulsion via modest outflows in the absence of cosmological accretion. Dynamical gas removal processes, which are likely dominant in quenching newly accreted satellites today, may play only a secondary role at z = 1.
  • Davis, Timothy A.; van de Voort, Freeke; Rowlands, Kate; McAlpine, Stuart; Wild, Vivienne; Crain, Robert A. (2019)
    Post-starburst galaxies arc typically considered to be a transition population, en route to the red sequence after a recent quenching event. Despite this, recent observations have shown that these objects typically have large reservoirs of cold molecular gas. In this paper we study the star-forming gas properties of a large sample of post-starburst galaxies selected from the cosmological, hydrodynamical EAGLE simulations. These objects resemble observed high-mass post-starburst galaxies both spectroscopically and in terms of their space density, stellar mass distribution, and sizes. We find that the vast majority of simulated post-starburst galaxies have significant gas reservoirs, with star-forming gas masses approximate to 10(9) M-circle dot, in good agreement with those seen in observational samples. The simulation reproduces the observed time evolution of the gas fraction of the post-starburst galaxy population, with the average galaxy losing approximate to 90 per cent of its star-forming interstellar medium in only approximate to 600 Myr. A variety of gas consumption/loss processes are responsible for this rapid evolution, including mergers and environmental effects, while active galactic nuclei play only a secondary role. The fast evolution in the gas fraction of post-starburst galaxies is accompanied by a clear decrease in the efficiency of star formation due to a decrease in the dense gas fraction. We predict that forthcoming ALMA observations of the gas reservoirs of low-redshift post-starburst galaxies will show that the molecular gas is typically compact and has disturbed kinematics, reflecting the disruptive nature of many of the evolutionary pathways that build up the post-starburst galaxy population.
  • CORE Collaboration; Burigana, C.; Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Väliviita, J. (2018)
    We discuss the effects on the cosmic microwave background (CMB), cosmic infrared background (CIB), and thermal Sunyaev-Zeldovich effect due to the peculiar motion of an observer with respect to the CMB rest frame, which induces boosting effects. After a brief review of the current observational and theoretical status, we investigate the scientific perspectives opened by future CMB space missions, focussing on the Cosmic Origins Explorer (CORE) proposal. The improvements in sensitivity offered by a mission like CORE, together with its high resolution over a wide frequency range, will provide a more accurate estimate of the CMB dipole. The extension of boosting effects to polarization and cross-correlations will enable a more robust determination of purely velocity-driven effects that are not degenerate with the intrinsic CMB dipole, allowing us to achieve an overall signal-to-noise ratio of 13; this improves on the Planck detection and essentially equals that of an ideal cosmic variance-limited experiment up to a multipole l similar or equal to 2000. Precise inter-frequency calibration will offer the opportunity to constrain or even detect CMB spectral distortions, particularly from the cosmological reionization epoch, because of the frequency dependence of the dipole spectrum, without resorting to precise absolute calibration. The expected improvement with respect to COBE-FIRAS in the recovery of distortion parameters (which could in principle be a factor of several hundred for an ideal experiment with the CORE configuration) ranges from a factor of several up to about 50, depending on the quality of foreground removal and relative calibration. Even in the case of similar or equal to 1% accuracy in both foreground removal and relative calibration at an angular scale of 1 degrees, we find that dipole analyses for a mission like CORE will be able to improve the recovery of the CIB spectrum amplitude by a factor similar or equal to 17 in comparison with current results based on COBE-FIRAS. In addition to the scientific potential of a mission like CORE for these analyses, synergies with other planned and ongoing projects are also discussed.
  • Pasini, T.; Finoguenov, A.; Brueggen, M.; Gaspari, M.; de Gasperin, F.; Gozaliasl, G. (2021)
    We investigate the kinematic properties of a large (N = 998) sample of COSMOS spectroscopic galaxy members distributed among 79 groups. We identify the Brightest Group Galaxies (BGGs) and cross-match our data with the VLA-COSMOS Deep survey at 1.4 GHz, classifying our parent sample into radio/non-radio BGGs and radio/non-radio satellites. The radio luminosity distribution spans from L-R similar to 2 x 10(21) WHz-1 to LR similar to 3 x 10(25) WHz(-1). A phase-space analysis, performed by comparing the velocity ratio (line-of-sight velocity divided by the group velocity dispersion) with the galaxy-group centre offset, reveals that BGGs (radio and non-radio) are mostly (similar to 80 per cent) ancient infallers. Furthermore, the strongest (L-R > 10(23) W Hz(-1)) radio galaxies are always found within 0.2R(vir) from the group centre. Comparing our samples with HORIZON-AGN, we find that the velocities and offsets of simulated galaxies aremore similar to radio BGGs than to non-radio BGGs, albeit statistical tests still highlight significant differences between simulated and real objects. We find that radio BGGs are more likely to be hosted in high-mass groups. Finally, we observe correlations between the powers of BGG radio galaxies and the X-ray temperatures, T-x, and X-ray luminosities, L-x, of the host groups. This supports the existence of a link between the intragroup medium and the central radio source. The occurrence of powerful radio galaxies at group centres can be explained by Chaotic Cold Accretion, as the AGN can feed from both the galactic and intragroup condensation, leading to the observed positive L-R - T-x correlation.