Browsing by Subject "REGULATORS"

Sort by: Order: Results:

Now showing items 1-12 of 12
  • Hämetoja, Hanna; Andersson, Leif C.; Mäkitie, Antti; Bäck, Leif; Hagström, Jaana; Haglund, Caj (2021)
    The key regulator of the polyamine biosynthetic pathway is ornithine decarboxylase (ODC). ODC is activated by antizyme inhibitor 1 (AZIN1) and 2 (AZIN2). AZIN1 and recently AZIN2 have been related to cancer; however, their functions in adenoid cystic carcinoma (ACC) have not been studied. We performed immunohistochemical study on minor salivary and mucous gland ACC tissue samples of patients treated at the Helsinki University Hospital (Helsinki, Finland) during 1974-2012. We scored AZIN1 and 2 immunoexpression in 42 and 45 tumor tissue samples, respectively, and correlated them with clinicopathological factors and survival. Enhanced AZIN2 expression was associated with better survival. In addition, both AZINs were seen more commonly in cribriform and tubular than in solid growth patterns. AZIN1 expression did not correlate with the studied clinicopathological factors. It seems that AZIN2 expression is higher in cancer tissue with secretory functions. In ACC tissue, high AZIN2 expression could be related to well-differentiated histological type which still has a functioning vesicle transportation system. Thus, AZIN2 could be a prognostic factor for better survival of ACC patients.
  • Ye, Lingling; Wang, Xin; Lyu, Munan; Siligato, Riccardo; Eswaran, Gugan; Vainio, Leo; Blomster, Tiina; Zhang, Jing; Mähönen, Ari Pekka (2021)
    During primary growth, plant tissues increase their length, and as these tissues mature, they initiate secondary growth to increase thickness.(1) It is not known what activates this transition to secondary growth. Cytokinins are key plant hormones regulating vascular development during both primary and secondary growth. During primary growth of Arabidopsis roots, cytokinins promote procambial cell proliferation(2,3) and vascular patterning together with the hormone auxin.(4-7) In the absence of cytokinins, secondary growth fails to initiate.(8) Enhanced cytokinin levels, in turn, promote secondary growth.(8,9) Despite the importance of cytokinins, little is known about the downstream signaling events in this process. Here, we show that cytokinins and a few downstream LATERAL ORGAN BOUNDARIES DOMAIN (LBD) family of transcription factors are rate limiting components in activating and further promoting secondary growth in Arabidopsis roots. Cytokinins directly activate transcription of two homologous LBD genes, LBD3 and LBD4. Two other homologous LBDs, LBD1 and LBD11, are induced only after prolonged cytokinin treatment. Our genetic studies revealed a two stage mechanism downstream of cytokinin signaling: while LBD3 and LBD4 regulate activation of secondary growth, LBD1, LBD3, LBD4, and LBD11 together promote further radial growth and maintenance of cambial stem cells. LBD overexpression promoted rapid cell growth followed by accelerated cell divisions, thus leading to enhanced secondary growth. Finally, we show that LBDs rapidly inhibit cytokinin signaling. Together, our data suggest that the cambium-promoting LBDs negatively feed back into cytokinin signaling to keep root secondary growth in balance.
  • Rasila, Tiina; Lehtonen, Alexandra; Kanerva, Kristiina; Mäkitie, Laura T.; Haglund, Caj; Andersson, Leif C. (2016)
    Ornithine decarboxylase (ODC) antizyme inhibitor 2 (AZIN2), originally called ODCp, is a regulator of polyamine synthesis that we originally identified and cloned. High expression of ODCp mRNA was found in brain and testis. We reported that AZIN2 is involved in regulation of cellular vesicle transport and/or secretion, but the ultimate physiological role(s) of AZIN2 is still poorly understood. In this study we used a peptide antibody (K3) to human AZIN2 and by immunohistochemistry mapped its expression in various normal tissues. We found high expression in the nervous system, in type 2 pneumocytes in the lung, in megakaryocytes, in gastric parietal cells co-localized with H, K-ATPase beta subunit, in selected enteroendocrine cells, in acinar cells of sweat glands, in podocytes, in macula densa cells and epithelium of collecting ducts in the kidney. The high expression of AZIN2 in various cells with secretory or vesicle transport activity indicates that the polyamine metabolism regulated by AZIN2 is more significantly involved in these events than previously appreciated.
  • Ramilowski, Jordan A.; Yip, Chi Wai; Agrawal, Saumya; Chang, Jen-Chien; Ciani, Yari; Kulakovskiy, Ivan V.; Mendez, Mickael; Ooi, Jasmine Li Ching; Ouyang, John F.; Parkinson, Nick; Petri, Andreas; Roos, Leonie; Severin, Jessica; Yasuzawa, Kayoko; Abugessaisa, Imad; Akalin, Altuna; Antonov, Ivan V.; Arner, Erik; Bonetti, Alessandro; Bono, Hidemasa; Borsari, Beatrice; Brombacher, Frank; Cameron, Chris J. F.; Cannistraci, Carlo Vittorio; Cardenas, Ryan; Cardon, Melissa; Chang, Howard; Dostie, Josee; Ducoli, Luca; Favorov, Alexander; Fort, Alexandre; Garrido, Diego; Gil, Noa; Gimenez, Juliette; Guler, Reto; Handoko, Lusy; Harshbarger, Jayson; Hasegawa, Akira; Hasegawa, Yuki; Hashimoto, Kosuke; Hayatsu, Norihito; Heutink, Peter; Hirose, Tetsuro; Imada, Eddie L.; Itoh, Masayoshi; Kaczkowski, Bogumil; Kanhere, Aditi; Kawabata, Emily; Kawaji, Hideya; Kawashima, Tsugumi; Kelly, S. Thomas; Kojima, Miki; Kondo, Naoto; Koseki, Haruhiko; Kouno, Tsukasa; Kratz, Anton; Kurowska-Stolarska, Mariola; Kwon, Andrew Tae Jun; Leek, Jeffrey; Lennartsson, Andreas; Lizio, Marina; Lopez-Redondo, Fernando; Luginbuhl, Joachim; Maeda, Shiori; Makeev, Vsevolod J.; Marchionni, Luigi; Medvedeva, Yulia A.; Minoda, Aki; Mueller, Ferenc; Munoz-Aguirre, Manuel; Murata, Mitsuyoshi; Nishiyori, Hiromi; Nitta, Kazuhiro R.; Noguchi, Shuhei; Noro, Yukihiko; Nurtdinov, Ramil; Okazaki, Yasushi; Orlando, Valerio; Paquette, Denis; Parr, Callum J. C.; Rackham, Owen J. L.; Rizzu, Patrizia; Martinez, Diego Fernando Sanchez; Sandelin, Albin; Sanjana, Pillay; Semple, Colin A. M.; Shibayama, Youtaro; Sivaraman, Divya M.; Suzuki, Takahiro; Szumowski, Suzannah C.; Tagami, Michihira; Taylor, Martin S.; Terao, Chikashi; Thodberg, Malte; Thongjuea, Supat; Tripathi, Vidisha; Ulitsky, Igor; Verardo, Roberto; Vorontsov, Ilya E.; Yamamoto, Chinatsu; Young, Robert S.; Baillie, J. Kenneth; Forrest, Alistair R. R.; Guigo, Roderic; Hoffman, Michael M.; Hon, Chung Chau; Kasukawa, Takeya; Kauppinen, Sakari; Kere, Juha; Lenhard, Boris; Schneider, Claudio; Suzuki, Harukazu; Yagi, Ken; Hoon, Michiel J. L. de; Shin, Jay W.; Carninci, Piero (2020)
    Long noncoding RNAs (lncRNAs) constitute the majority of transcripts in the mammalian genomes, and yet, their functions remain largely unknown. As part of the FANTOM6 project, we systematically knocked down the expression of 285 lncRNAs in human dermal fibroblasts and quantified cellular growth, morphological changes, and transcriptomic responses using Capped Analysis of Gene Expression (CAGE). Antisense oligonucleotides targeting the same lncRNAs exhibited global concordance, and the molecular phenotype, measured by CAGE, recapitulated the observed cellular phenotypes while providing additional insights on the affected genes and pathways. Here, we disseminate the largest-todate lncRNA knockdown data set with molecular phenotyping (over 1000 CAGE deep-sequencing libraries) for further exploration and highlight functional roles for ZNF213-AS1 and lnc-KHDC3L-2.
  • Zeng, Zhen; Wu, Jiayao; Kovalchuk, Andriy; Raffaello, Tommaso; Wen, Zilan; Liu, Mengxia; Asiegbu, Fred O. (2019)
    Heterobasidion parviporum is the most devastating fungal pathogen of conifer forests in Northern Europe. The fungus has dual life strategies, necrotrophy on living trees and saprotrophy on dead woods. DNA cytosine methylation is an important epigenetic modification in eukaryotic organisms. Our presumption is that the lifestyle transition and asexual development in H. parviporum could be driven by epigenetic effects. Involvements of DNA methylation in the regulation of aforementioned processes have never been studied thus far. RNA-seq identified lists of highly induced genes enriched in carbohydrate-active enzymes during necrotrophic interaction with host trees and saprotrophic sawdust growth. It also highlighted signaling- and transcription factor-related genes potentially associated with the transition of saprotrophic to necrotrophic lifestyle and groups of primary cellular activities throughout asexual development. Whole-genome bisulfite sequencing revealed that DNA methylation displayed pronounced preference in CpG dinucleotide context across the genome and mostly targeted transposable element (TE)-rich regions. TE methylation level demonstrated a strong negative correlation with TE expression, reinforcing the protective function of DNA methylation in fungal genome stability. Small groups of genes putatively subject to methylation transcriptional regulation in response to saprotrophic and necrotrophic growth in comparison with free-living mycelia were also explored. Our study reported on the first methylome map of a forest pathogen. Analysis of transcriptome and methylome variations associated with asexual development and different lifestyle strategies provided further understanding of basic biological processes in H. parviporum. More importantly, our work raised additional potential roles of DNA methylation in fungi apart from controlling the proliferation of TEs.
  • Oksanen, Minna; Hyötyläinen, Ida; Trontti, Kalevi; Rolova, Taisia; Wojciechowski, Sara; Koskuvi, Marja; Viitanen, Matti; Levonen, Anna-Liisa; Hovatta, Iiris; Roybon, Laurent; Lehtonen, Sarka; Kanninen, Katja M.; Hämäläinen, Riikka H.; Koistinaho, Jari (2020)
    Alzheimer's disease (AD) is a common dementia affecting a vast number of individuals and significantly impairing quality of life. Despite extensive research in animal models and numerous promising treatment trials, there is still no curative treatment for AD. Astrocytes, the most common cell type of the central nervous system, have been shown to play a role in the major AD pathologies, including accumulation of amyloid plaques, neuroinflammation, and oxidative stress. Here, we show that inflammatory stimulation leads to metabolic activation of human astrocytes and reduces amyloid secretion. On the other hand, the activation of oxidative metabolism leads to increased reactive oxygen species production especially in AD astrocytes. While healthy astrocytes increase glutathione (GSH) release to protect the cells, Presenilin-1-mutated AD patient astrocytes do not. Thus, chronic inflammation is likely to induce oxidative damage in AD astrocytes. Activation of NRF2, the major regulator of cellular antioxidant defenses, encoded by the NFE2L2 gene, poses several beneficial effects on AD astrocytes. We report here that the activation of NRF2 pathway reduces amyloid secretion, normalizes cytokine release, and increases GSH secretion in AD astrocytes. NRF2 induction also activates the metabolism of astrocytes and increases the utilization of glycolysis. Taken together, targeting NRF2 in astrocytes could be a potent therapeutic strategy in AD.
  • Santio, Niina M.; Vainio, Veera; Hoikkala, Tuuli; Mung, Kwan Long; Lång, Mirka; Vahakoski, Riitta; Zdrojewska, Justyna; Coffey, Eleanor T.; Kremneva, Elena; Rainio, Eeva-Marja; Koskinen, Päivi J. (2020)
    Background: The PIM family kinases promote cancer cell survival and motility as well as metastatic growth in various types of cancer. We have previously identified several PIM substrates, which support cancer cell migration and invasiveness. However, none of them are known to regulate cellular movements by directly interacting with the actin cytoskeleton. Here we have studied the phosphorylation-dependent effects of PIM1 on actin capping proteins, which bind as heterodimers to the fast-growing actin filament ends and stabilize them. Methods: Based on a phosphoproteomics screen for novel PIM substrates, we have used kinase assays and fluorescence-based imaging techniques to validate actin capping proteins as PIM1 substrates and interaction partners. We have analysed the functional consequences of capping protein phosphorylation on cell migration and adhesion by using wound healing and real-time impedance-based assays. We have also investigated phosphorylation-dependent effects on actin polymerization by analysing the protective role of capping protein phosphomutants in actin disassembly assays. Results: We have identified capping proteins CAPZA1 and CAPZB2 as PIM1 substrates, and shown that phosphorylation of either of them leads to increased adhesion and migration of human prostate cancer cells. Phosphorylation also reduces the ability of the capping proteins to protect polymerized actin from disassembly. Conclusions: Our data suggest that PIM kinases are able to induce changes in actin dynamics to support cell adhesion and movement. Thus, we have identified a novel mechanism through which PIM kinases enhance motility and metastatic behaviour of cancer cells.
  • Taneera, Jalal; Prasad, Rashmi B.; Dhaiban, Sarah; Mohammed, Abdul Khader; Haataja, Leena; Aryan, Peter; Hamad, Mawieh; Groop, Leif; Wollheim, Claes B. (2018)
    Expression of fat mass and obesity-associated gene (FTO) and ADP-ribosylation factor-like 15 (ARL15) in human islets is inversely correlated with HbA(1c). However, their impact on insulin secretion is still ambiguous. Here in, we investigated the role of FTO and ARL15 using GRINCH (Glucose-Responsive Insulin-secreting C-peptide-modified Human proinsulin) clonal rat beta-cells. GRINCH cells have inserted GFP into the human C-peptide insulin gene. Hence, secreted CpepGFP served to monitor insulin secretion. mRNA silencing of FTO in GRINCH cells showed a significant reduction in glucose but not depolarization-stimulated insulin secretion, whereas ARL15 silencing had no effect. A significant down-regulation of insulin mRNA was observed in FTO knockdown cells. Type-2 Diabetic islets revealed a reduced expression of FTO mRNA. In conclusion, our data suggest that fluorescent CpepGFP released from GRINCH cells may serve as a convenient marker for insulin secretion. Silencing of FTO expression, but not ARL15, inhibits insulin secretion by affecting metabolic signaling.
  • Gullaksen, Stein-Erik; Skavland, Jorn; Gavasso, Sonia; Tosevski, Vinko; Warzocha, Krzysztof; Dumrese, Claudia; Ferrant, Augustin; Gedde-Dahl, Tobias; Hellmann, Andrzej; Janssen, Jeroen; Labar, Boris; Lang, Alois; Majeed, Waleed; Mihaylov, Georgi; Stentoft, Jesper; Stenke, Leif; Thaler, Josef; Thielen, Noortje; Verhoef, Gregor; Voglova, Jaroslava; Ossenkoppele, Gert; Hochhaus, Andreas; Hjorth-Hansen, Henrik; Mustjoki, Satu; Sopper, Sieghart; Giles, Francis; Porkka, Kimmo; Wolf, Dominik; Gjertsen, Bjorn Tore (2017)
    Monitoring of single cell signal transduction in leukemic cellular subsets has been proposed to provide deeper understanding of disease biology and prognosis, but has so far not been tested in a clinical trial of targeted therapy. We developed a complete mass cytometry analysis pipeline for characterization of intracellular signal transduction patterns in the major leukocyte subsets of chronic phase chronic myeloid leukemia. Changes in phosphorylated Bcr-Abl1 and the signaling pathways involved were readily identifiable in peripheral blood single cells already within three hours of the patient receiving oral nilotinib. The signal transduction profiles of healthy donors were clearly distinct from those of the patients at diagnosis. Furthermore, using principal component analysis, we could show that phosphorylated transcription factors STAT3 (Y705) and CREB (S133) within seven days reflected BCR-ABL1(IS) at three and six months. Analyses of peripheral blood cells longitudinally collected from patients in the ENEST1st clinical trial showed that single cell mass cytometry appears to be highly suitable for future investigations addressing tyrosine kinase inhibitor dosing and effect. (clinicaltrials. gov identifier: 01061177)
  • Amdahl, Hanne; Haapasalo, Karita; Tan, Lydia; Meri, Taru; Kuusela, Pentti I.; van Strijp, Jos A.; Rooijakkers, Suzan; Jokiranta, T. Sakari (2017)
    Staphyloccus aureus is a major human pathogen leading frequently to sepsis and soft tissue infections with abscesses. Multiple virulence factors including several immune modulating molecules contribute to its survival in the host. When S. aureus invades the human body, one of the first line defenses is the complement system, which opsonizes the bacteria with C3b and attract neutrophils by release of chemotactic peptides. Neutrophils express Complement receptor-1 [CR1, CD35) that interacts with the C3b-opsonized particles and thereby plays an important role in pathogen recognition by phagocytic cells. In this study we observed that a fraction of S. aureus culture supernatant prevented binding of C3b to neutrophils. This fraction consisted of S. aureus leukocidins and Efb. The C-terminus of Efb is known to bind C3b and shares significant sequence homology to the extracellular complement binding protein [Ecb). Here we show that S. aureus Ecb displays various mechanisms to block bacterial recognition by neutrophils. The presence of Ecb blocked direct interaction between soluble CR1 and C3b and reduced the cofactor activity of CR1 in proteolytic inactivation of C3b. Furthermore, Ecb could dose-dependently prevent recognition of C3b by cell-bound CR1 that lead to impaired phagocytosis of NHS-opsonized S. aureus. Phagocytosis was furthermore reduced in the presence of soluble CR1 [sCR1). These data indicate that the staphylococcal protein Ecb prevents recognition of C3b opsonized bacteria by neutrophil CR1 leading to impaired killing by phagocytosis and thereby contribute to immune evasion of S. aureus.
  • Klaas, Mariliis; Mäemets-Allas, Kristina; Heinmäe, Elizabeth; Lagus, Heli; Cardenas-Leon, Claudia Griselda; Arak, Terje; Eller, Mart; Kingo, Külli; Kankuri, Esko; Jaks, Viljar (2021)
    Thrombospondin-4 (THBS4) is a non-structural extracellular matrix molecule associated with tissue regeneration and a variety of pathological processes characterized by increased cell proliferation and migration. However, the mechanisms of how THBS4 regulates cell behavior as well as the pathways contributing to its effects have remained largely unexplored. In the present study we investigated the role of THBS4 in skin regeneration both in vitro and in vivo. We found that THBS4 expression was upregulated in the dermal compartment of healing skin wounds in humans as well as in mice. Application of recombinant THBS4 protein promoted cutaneous wound healing in mice and selectively stimulated migration of primary fibroblasts as well as proliferation of keratinocytes in vitro. By using a combined proteotranscriptomic pathway analysis approach we discovered that beta-catenin acted as a hub for THBS4-dependent cell signaling and likely plays a key role in promoting its downstream effects. Our results suggest that THBS4 is an important contributor to wound healing and its incorporation into novel wound healing therapies may be a promising strategy for treatment of cutaneous wounds.