Browsing by Subject "RELATIVE IMPORTANCE"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • Dall'Osto, M.; Ceburnis, D.; Martucci, G.; Bialek, J.; Dupuy, R.; Jennings, S. G.; Berresheim, H.; Wenger, J.; Healy, R.; Facchini, M. C.; Rinaldi, M.; Giulianelli, L.; Finessi, E.; Worsnop, Douglas; Ehn, Mikael; Mikkilä, Jyri; Kulmala, Markku; O'Dowd, C. D. (2010)
  • Rincon, Margarita M.; Catalan, Ignacio A.; Mantyniemi, Samu; Macias, Diego; Ruiz, Javier (2018)
    Many studies underscore the importance of incorporating the effect of environmental data within a life-history-stage-specific framework for determining the recruitment and survival of small pelagic fish. The recruitment of anchovy (Engraulis encrasicolus) in the Gulf of Cadiz (NE Atlantic) is sensitive to the effect of intense easterlies, stratification of the water column, and discharges from the Guadalquivir River on early life stages. As a proof of concept, we have developed the basis for a new Bayesian model with a dual time step resolution: monthly for juveniles and adults, and weekly for earlier life stages. This dual time step resolution resolves environmental effects on prerecruits while simulating the effect of fishing on recruits. Our estimates for juvenile abundances are validated with field data. The Bayesian framework accounts for the uncertainty, thus providing consistent length-frequency estimates and a plausible environmentally driven stock-recruitment relationship.
  • Aarnio, Sonja; Teittinen, Anette; Soininen, Janne (2019)
    Different metacommunity perspectives have been developed to describe the relationship between environmental and spatial factors and their relative roles for local communities. However, only little is known about temporal variation in metacommunities and their underlying drivers. We examined temporal variation in the relative roles of environmental and spatial factors for diatom community composition among brackish-watered rock pools on the Baltic Sea coast over a 3-month period. We used a combination of direct ordination, variation partition, and Mantel tests to investigate the metacommunity patterns. The studied communities housed a mixture of freshwater, brackish, and marine species, with a decreasing share of salinity tolerant species along both temporal and spatial gradients. The community composition was explained by both environmental and spatial variables (especially conductivity and distance from the sea) in each month; the joint effect of these factors was consistently larger than the pure effects of either variable group. Community similarity was related to both environmental and spatial distance between the pools even when the other variable group was controlled for. The relative influence of environmental factors increased with time, accounting for the largest share of the variation in species composition and distance decay of similarity in July. Metacommunity organization in the studied rock pools was probably largely explained by a combination of species sorting and mass effect given the small spatial study scale. The found strong distance decay of community similarity indicates spatially highly heterogeneous diatom communities mainly driven by temporally varying conductivity gradient at the marine-freshwater transition zone.
  • Vesterinen, Jussi; Keva, Ossi; Kahilainen, Kimmo K.; Strandberg, Ursula; Hiltunen, Minna; Kankaala, Paula; Taipale, Sami J. (2021)
    Littoral benthic primary production is considered the most important energy source of consumers in subarctic lakes. We analyzed essential fatty acid (EFA) and amino acid (EAA) content of 23 littoral benthic macroinvertebrate taxa as well as cladocerans and copepods from pelagic and littoral habitats of 8-9 subarctic lakes to compare their nutritional quality. Pelagic crustacean zooplankton had significantly higher EFA and total FA content (on average 2.6-fold and 1.6-fold, respectively) than littoral macroinvertebrates in all our study lakes. Specifically, docosahexaenoic acid (DHA), one of the most important EFA for juvenile fish, was almost exclusively found in pelagic copepods. In littoral macroinvertebrates, onlyLymnaea(Gastropoda),Eurycercus(Cladocera), andGammarus(Amphipoda) contained a low amount of DHA, whereas most littoral invertebrate taxa contained moderate amounts of eicosapentaenoic acid (EPA). The difference in DHA content may explain why so many generalist fish shift their diet to pelagic zooplankton at their peak abundance in mid/late-summer. Meanwhile, the differences in EAA content between pelagic zooplankton and littoral invertebrates were much lower than for EFA suggesting a wider availability of EAA in subarctic lakes, except for methionine. In the studied subarctic lakes, EFA and EAA variation in consumers was more related to taxon-specific than lake-specific characteristics. This indicates that climate-induced changes in the abundance and community structure of zooplankton vs. littoral macroinvertebrates will be important parameters in determining the availability of EFA and EAA to juvenile fish, and potentially fish production.
  • Gagnon, Karine; Gustafsson, Camilla; Salo, Tiina; de Rossi, Francesca; Gunell, Sonja; Richardson, J. Paul; Reynolds, Pamela L.; Duffy, J. Emmett; Boström, Christoffer (2021)
    Understanding the ecological interactions that enhance the resilience of threatened ecosystems is essential in assuring their conservation and restoration. Top-down trophic interactions can increase resilience to bottom-up nutrient enrichment, however, as many seagrass ecosystems are threatened by both eutrophication and trophic modifications, understanding how these processes interact is important. Using a combination of approaches, we explored how bottom-up and top-down processes, acting individually or in conjunction, can affect eelgrass meadows and associated communities in the northern Baltic Sea. Field surveys along with fish diet and stable isotope analyses revealed that the eelgrass trophic network included two main top predatory fish species, each of which feeds on a separate group of invertebrate mesograzers (crustaceans or gastropods). Mesograzer abundance in the study area was high, and capable of mitigating the effects of increased algal biomass that resulted from experimental nutrient enrichment in the field. When crustacean mesograzers were experimentally excluded, gastropod mesograzers were able to compensate and limit the effects of nutrient enrichment on eelgrass biomass and growth. Our results suggest that top-down processes (i.e., suppression of algae by different mesograzer groups) may ensure eelgrass resilience to nutrient enrichment in the northern Baltic Sea, and the existence of multiple trophic pathways can provide additional resilience in the face of trophic modifications. However, the future resilience of these meadows is likely threatened by additional local stressors and global environmental change. Understanding the trophic links and interactions that ensure resilience is essential for managing and conserving these important ecosystems and the services they provide.
  • Ferreira, Diogo F.; Rocha, Ricardo; Lopez-Baucells, Adria; Farneda, Fabio Z.; Carreiras, Joao M. B.; Palmeirim, Jorge M.; Meyer, Christoph F. J. (2017)
    Seasonality causes fluctuations in resource availability, affecting the presence and abundance of animal species. The impacts of these oscillations on wildlife populations can be exacerbated by habitat fragmentation. We assessed differences in bat species abundance between the wet and dry season in a fragmented landscape in the Central Amazon characterized by primary forest fragments embedded in a secondary forest matrix. We also evaluated whether the relative importance of local vegetation structure versus landscape characteristics (composition and configuration) in shaping bat abundance patterns varied between seasons. Our working hypotheses were that abundance responses are species as well as season specific, and that in the wet season, local vegetation structure is a stronger determinant of bat abundance than landscape-scale attributes. Generalized linear mixed-effects models in combination with hierarchical partitioning revealed that relationships between species abundances and local vegetation structure and landscape characteristics were both season specific and scale dependent. Overall, landscape characteristics were more important than local vegetation characteristics, suggesting that landscape structure is likely to play an even more important role in landscapes with higher fragment-matrix contrast. Responses varied between frugivores and animalivores. In the dry season, frugivores responded more to compositional metrics, whereas during the wet season, local and configurational metrics were more important. Animalivores showed similar patterns in both seasons, responding to the same group of metrics in both seasons. Differences in responses likely reflect seasonal differences in the phenology of flowering and fruiting between primary and secondary forests, which affected the foraging behavior and habitat use of bats. Management actions should encompass multiscale approaches to account for the idiosyncratic responses of species to seasonal variation in resource abundance and consequently to local and landscape scale attributes.
  • Aarnio, Sonja; Soininen, Janne (2021)
    Local biodiversity has traditionally been estimated with taxonomic diversity metrics such as species richness. Recently, the concept of biodiversity has been extended beyond species identity by ecological traits determining the functional role of a species in a community. This interspecific functional diversity typically responds more strongly to local environmental variation compared with taxonomic diversity, while taxonomic diversity may mirror more strongly dispersal processes compared with functional metrics. Several trait-based indices have been developed to measure functional diversity for various organisms and habitat types, but studies of their applicability on aquatic microbial communities have been underrepresented. We examined the drivers and covariance of taxonomic and functional diversity among diatom rock pool communities on the Baltic Sea coast. We quantified three taxonomic (species richness, Shannon's diversity, and Pielou's evenness) and three functional (functional richness, evenness, and divergence) diversity indices and determined abiotic factors best explaining variation in these indices by generalized linear mixed models. The six diversity indices were highly collinear except functional evenness, which merely correlated significantly with taxonomic evenness. All diversity indices were always explained by water conductivity and temperature-sampling month interaction. Taxonomic diversity was further consistently explained by pool distance to the sea, and functional richness and divergence by pool location. The explained variance in regression models did not markedly differ between taxonomic and functional metrics. Our findings do not clearly support the superiority of neither set of diversity indices in explaining coastal microbial diversity, but rather highlight the general overlap among the indices. However, as individual metrics may be driven by different factors, the greatest advantage in assessing biodiversity is nevertheless probably achieved with a simultaneous application of the taxonomic and functional diversity metrics.