Browsing by Subject "REQUIRES"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Siljamaki, Elina; Rintanen, Nina; Kirsi, Maija; Upla, Paula; Wang, Wei; Karjalainen, Mikko; Ikonen, Elina; Marjomaki, Varpu (2013)
  • Guryanov, Sergey; Liljeroos, Lassi Juho Petteri; Kasaragod, Prasad; Kajander, Tommi Antero; Butcher, Sarah Jane (2016)
    ABSTRACT The enveloped negative-stranded RNA virus measles virus (MeV) is an important human pathogen. The nucleoprotein (N0) assembles with the viral RNA into helical ribonucleocapsids (NC) which are, in turn, coated by a helical layer of the matrix protein. The viral polymerase complex uses the NC as its template. The N0 assembly onto the NC and the activity of the polymerase are regulated by the viral phosphoprotein (P). In this study, we pulled down an N0 1-408 fragment lacking most of its C-terminal tail domain by several affinity-tagged, N-terminal P fragments to map the N0-binding region of P to the first 48 amino acids. We showed biochemically and using P mutants the importance of the hydrophobic interactions for the binding. We fused an N0 binding peptide, P1-48, to the C terminus of an N0 21-408 fragment lacking both the N-terminal peptide and the C-terminal tail of N protein to reconstitute and crystallize the N0-P complex. We solved the X-ray structure of the resulting N0-P chimeric protein at a resolution of 2.7 Å. The structure reveals the molecular details of the conserved N0-P interface and explains how P chaperones N0, preventing both self-assembly of N0 and its binding to RNA. Finally, we propose a model for a preinitiation complex for RNA polymerization. IMPORTANCE Measles virus is an important, highly contagious human pathogen. The nucleoprotein (N) binds only to viral genomic RNA and forms the helical ribonucleocapsid that serves as a template for viral replication. We address how N is regulated by another protein, the phosphoprotein (P), to prevent newly synthesized N from binding to cellular RNA. We describe the atomic model of an N-P complex and compare it to helical ribonucleocapsid. We thus provide insight into how P chaperones N and helps to start viral RNA synthesis. Our results provide a new insight into mechanisms of paramyxovirus replication. New data on the mechanisms of phosphoprotein chaperone action allows better understanding of virus genome replication and nucleocapsid assembly. We describe a conserved structural interface for the N-P interaction which could be a target for drug development to treat not only measles but also potentially other paramyxovirus diseases.
  • Blob, Bernhard; Heo, Jung-ok; Helariutta, Yka (2018)
    Plant vasculature consists of two major conductive cell types, xylem tracheary elements and phloem sieve elements (SEs). Both cell types undergo a highly specialized differentiation process. The root meristem of Arabidopsis displays a stereotypical anatomy in which the central vasculature is surrounded by concentric layers of outer tissues. Each cell file is derived from stem cells located in the root tip. A series of formative and proliferative divisions take place in the meristem; these are followed by cell expansion and differentiation. Protophloem differentiation is unique in being complete only 20-25 cells away from the first stem cell, and during the differentiation process the cells lose several organelles, including the nucleus, while the remaining organelles are rearranged. Defects in SE development have been shown to result in impaired auxin transport and response and therefore systemically affect root growth. Although a few genes have been demonstrated to function in phloem development, detailed analyses and a comprehensive understanding of sieve element development (i.e. how often the stem cells divide, how frequently enucleation takes place, and how SE development is coordinated between cell division and differentiation on a molecular level) are still lacking. Advanced live-imaging techniques which enable prolonged time-lapse captures of root tip growth as well as single-cell transcriptomic analysis of the 20-25 cells in the SE file could help resolve these questions. In addition, understanding the interplay between the PLETHORA (PLT) gradient, which is known to govern the root zonation, and phloem development within the root meristem could shed light on the rapidity of SE differentiation and its importance to the meristem.
  • Wallner, Eva-Sophie; Lopez-Salmeron, Vadir; Belevich, Ilya; Poschet, Gemot; Jung, Ilona; Gruenwald, Karin; Sevilem, Iris; Jokitalo, Eija; Hell, Rudiger; Helariutta, Yrjo; Agusti, Javier; Lebovka, Ivan; Greb, Thomas (2017)
    Plant stem cell niches, the meristems, require long-distance transport of energy metabolites and signaling molecules along the phloem tissue. However, currently it is unclear how specification of phloem cells is controlled. Here we show that the genes SUPPRESSOR OF MAX2 1-LIKE3 (SMXL3), SMXL4, and SMXL5 act as cell-autonomous key regulators of phloem formation in Arabidopsis thaliana. The three genes form an uncharacterized subclade of the SMXL gene family that mediates hormonal strigolactone and karrikin signaling. Strigolactones are endogenous signaling molecules regulating shoot and root branching [1] whereas exogenous karrikin molecules induce germination after wildfires [2]. Both activities depend on the F-box protein and SCF (Skp, Cullin, F-box) complex component MORE AXILLARY GROWTH2 (MAX2) [3-5]. Strigolactone and karrikin perception leads to MAX2-dependent degradation of distinct SMXL protein family members, which is key for mediating hormonal effects [6-12]. However, the nature of events immediately downstream of SMXL protein degradation and whether all SMXL proteins mediate strigolactone or karrikin signaling is unknown. In this study we demonstrate that, within the SMXL gene family, specifically SMXL3/4/5 deficiency results in strong defects in phloem formation, alteredsugar accumulation, and seedling lethality. By comparing protein stabilities, we show that SMXL3/4/5 proteins function differently to canonical strigolactone and karrikin signaling mediators, although being functionally interchangeable with those under low strigolactone/karrikin signaling conditions. Our observations reveal a fundamental mechanism of phloem formation and indicate that diversity of SMXL protein functions is essential for a steady fuelling of plant meristems.